\(14(2\sqrt{2} + 6\sqrt{5} - 4\sqrt{10})\)
\(\frac{1}{14}(2 - 3\sqrt{2} - 4\sqrt{5} - 6\sqrt{10})\)
\(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 6\sqrt{10} - 2)\)
\(14(2 + 3\sqrt{2} - 6\sqrt{5} + 4\sqrt{10})\)
Correct answer is C
\(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}} = (\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}})(\frac{2 - 3\sqrt{2}}{2 - 3\sqrt{2}})\)
= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{4 - 6\sqrt{2} + 6\sqrt{2} - 18}\)
= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{-14}\)
= \(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 2 - 6\sqrt{10})\) (dividing through with the minus sign)
If g(x) = √(1-x\(^2\)), find the domain of g(x)...
Which of the following is a factor of the polynomial \(6x^{4} + 2x^{3} + 15x + 5\)?...
If \(f(x) = \frac{4}{x} - 1, x \neq 0\), find \(f^{-1}(7)\)....
Given that \(f(x) = 5x^{2} - 4x + 3\), find the coordinates of the point where the gradient is 6....