\(14(2\sqrt{2} + 6\sqrt{5} - 4\sqrt{10})\)
\(\frac{1}{14}(2 - 3\sqrt{2} - 4\sqrt{5} - 6\sqrt{10})\)
\(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 6\sqrt{10} - 2)\)
\(14(2 + 3\sqrt{2} - 6\sqrt{5} + 4\sqrt{10})\)
Correct answer is C
\(\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}} = (\frac{1 - 2\sqrt{5}}{2 + 3\sqrt{2}})(\frac{2 - 3\sqrt{2}}{2 - 3\sqrt{2}})\)
= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{4 - 6\sqrt{2} + 6\sqrt{2} - 18}\)
= \(\frac{2 - 3\sqrt{2} - 4\sqrt{5} + 6\sqrt{10}}{-14}\)
= \(\frac{1}{14}(3\sqrt{2} + 4\sqrt{5} - 2 - 6\sqrt{10})\) (dividing through with the minus sign)
Find the acute angle between the lines 2x + y = 4 and -3x + y + 7 = 0. ...
Find the coordinates of the centre of the circle \(3x^{2}+3y^{2} - 4x + 8y -2=0\)...
Find the equation of a circle with centre (2, -3) and radius 2 units. ...
Find the equation of the line which passes through (-4, 3) and parallel to line y = 2x + 5. ...
If \(2\sin^{2}\theta = 1 + \cos \theta, 0° \leq \theta \leq 90°\), find \(\theta\)...
\(P = {x : 1 \leq x \leq 6}\) and \(Q = {x : 2 < x < 9}\) where \(x \in R\), find \(P \cap Q\)...