\(\begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ 3 & -2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ -3 & 2 \end{pmatrix}\)
\(\begin{pmatrix} -8 & -5 \\ -3 & -2 \end{pmatrix}\)
Correct answer is A
Let \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = T^{-1}\)
\(T . T^{-1} = I\)
\(\begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
\(\implies -2a - 5c = 1\)
\(-2b - 5d = 0 \implies b = \frac{-5d}{2}\)
\(3a + 8c = 0 \implies a = \frac{-8c}{3}\)
\(3b + 8d = 1\)
\(-2(\frac{-8c}{3}) - 5c = \frac{16c}{3} - 5c = \frac{c}{3} = 1 \implies c = 3\)
\(3(\frac{-5d}{2}) + 8d = \frac{-15d}{2} + 8d = \frac{d}{2} = 1 \implies d = 2\)
\(b = \frac{-5 \times 2}{2} = -5\)
\(a = \frac{-8 \times 3}{3} = -8\)
\(\therefore T^{-1} = \begin{pmatrix} -8 & -5 \\ 3 & 2 \end{pmatrix}\)
Evaluate \(\int_{1}^{2} (2 + 2x - 3x^{2}) \mathrm {d} x\)....
Given that \(f : x \to x^{2}\) and \(g : x \to x + 3\), where \(x \in R\), find \(f o g(2)\)....
If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k...
Find the domain of \(g(x) = \frac{4x^{2} - 1}{\sqrt{9x^{2} + 1}}\)...
If \((2x^{2} - x - 3)\) is a factor of \(f(x) = 2x^{3} - 5x^{2} - x + 6\), find the other factor...
Age in years 10 - 14 15 - 19 20 - 24 25 - 29 30 - 34 Frequency 6 8 14 10 12 ...