Forces 90N and 120N act in the directions 120° and 24...
Forces 90N and 120N act in the directions 120° and 240° respectively. Find the resultant of these forces.
−45(2i+√2j)
60(√3i+7j)
30(7i+√3j)
−15(7i+√3j)
Correct answer is D
F=Fcosθ+Fsinθ
\implies 90N = 90\cos 120° + 90\sin 120°
120N = 120 \cos 240° + 120 \sin 240°
R = F_{1} + F_{2}
= (90 \cos 120 + 120 \cos 240)i + (90\sin 120 + 120 \sin 240)j
= 90(-0.5) + 120(-0.5))i + (90(\frac{\sqrt{3}}{2}) + (120(-\frac{\sqrt{3}}{2}))j
= -105i - 15\sqrt{3}j = -15(7i + \sqrt{3}j)
A particle is acted upon by two forces 6N and 3N inclined at an angle of 120° to each other. Fin...
Which of the following vectors is perpendicular to \begin{pmatrix} -1 & 3 \end{pmatrix}?...
Differentiate \frac{x}{x + 1} with respect to x...
Solve: 4sin^2θ + 1 = 2, where 0º < θ < 180º...
Given \(\begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \begin{vmatrix} -6 \\ k...
Given that \frac{\mathrm d y}{\mathrm d x} = \sqrt{x}, find y....
Calculate the standard deviation of 30, 29, 25, 28, 32 and 24. ...