Express (14N, 240°) as a column vector.
...Express (14N, 240°) as a column vector.
\(\begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}\)
\(\begin{pmatrix} 7\sqrt{3} \\ 7\sqrt{3} \end{pmatrix}\)
\(\begin{pmatrix} -7\sqrt{3} \\ -7 \end{pmatrix}\)
\(\begin{pmatrix} 7 \\ -7\sqrt{3} \end{pmatrix}\)
Correct answer is A
\(F = \begin{pmatrix} F_{x} \\ F_{y} \end{pmatrix} = \begin{pmatrix} F\cos \theta \\ F\sin \theta \end{pmatrix}\)
\((14N, 240°) = \begin{pmatrix} 14\cos 240 \\ 14\sin 240 \end{pmatrix}\)
= \(\begin{pmatrix} 14 \times -0.5 \\ 14 \times \frac{-\sqrt{3}}{2} \end{pmatrix}\)
= \(\begin{pmatrix} -7 \\ -7\sqrt{3} \end{pmatrix}\)
Given that \(\sin x = \frac{-\sqrt{3}}{2}\) and \(\cos x > 0\), find x...
Find the coordinates of the centre of the circle \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)....
Simplify \(\frac{\tan 80° - \tan 20°}{1 + \tan 80° \tan 20°}\)...
Find the range of values of x for which \(2x^{2} + 7x - 15 > 0\)....
Find the coefficient of \(x^{3}\) in the binomial expansion of \((x - \frac{3}{x^{2}})^{9}\)....
A polynomial is defined by \(f(x + 1) = x^{3} + px^{2} - 4x + 2\), find f(2)...
If \(\log_{3} x = \log_{9} 3\), find the value of x....
If the solution set of \(x^{2} + kx - 5 = 0\) is (-1, 5), find the value of k....
The third of geometric progression (G.P) is 10 and the sixth term is 80. Find the common ratio. ...
The functions f:x → 2x\(^2\) + 3x -7 and g:x →5x\(^2\) + 7x - 6 are defined on the se...