\(\frac{-2}{\sqrt{3}}\)
\(\frac{-\sqrt{3}}{2}\)
\(\frac{\sqrt{3}}{4}\)
\(\frac{4}{\sqrt{3}}\)
Correct answer is B
\(\cos (x + y) = \cos x \cos y - \sin x \sin y\)
\(\cos (\frac{\pi}{2} + \frac{\pi}{3}) = \cos \frac{\pi}{2} \cos \frac{\pi}{3} - \sin \frac{\pi}{2} \sin \frac{\pi}{3}\)
= \((0 \times \frac{1}{2}) - (1 \times \frac{\sqrt{3}}{2})\)
= \(0 - \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2}\)
Which of the following is not an equation of a circle? ...
Evaluate \(\log_{10}(\frac{1}{3} + \frac{1}{4}) + 2\log_{10} 2 + \log_{10} (\frac{3}{7})\)...
If \(2, (k+1), 8,...\) form an exponential sequence (GP), find the values of k...
Find the magnitude and direction of the vector \(p = (5i - 12j)\)...