\(\frac{1}{54}\)
\(\frac{13}{54}\)
\(\frac{20}{27}\)
\(\frac{41}{54}\)
Correct answer is B
P(only one hit target) = P(Kofi not Ama) + P(Ama not Kofi)
P(Kofi not Ama) = P(Kofi and Ama') = \(\frac{1}{6} \times \frac{8}{9} = \frac{8}{54}\)
P(Ama not Kofi) = P(Ama and Kofi') = \(\frac{1}{9} \times \frac{5}{6} = \frac{5}{54}\)
P(only one hit target) = \(\frac{8}{54} + \frac{5}{54} = \frac{13}{54}\)
Which of the following is the same as \(\sin (270 + x)°\)?...
Find \(\int \frac{x^{3} + 5x + 1}{x^{3}} \mathrm {d} x\)...
Given that \(f(x) = 2x^{3} - 3x^{2} - 11x + 6\) and \(f(3) = 0\), factorize f(x)...
If \(T = \begin{pmatrix} -2 & -5 \\ 3 & 8 \end{pmatrix}\), find \(T^{-1}\), the inverse of T...
Given that \(\log_{2} y^{\frac{1}{2}} = \log_{5} 125\), find the value of y...