\(\frac{6 + \sqrt{2}}{4}\)
\(\frac{3 + \sqrt{6}}{4}\)
\(\frac{\sqrt{2} - \sqrt{6}}{4}\)
\(\frac{3 - \sqrt{6}}{4}\)
Correct answer is C
\(\cos (x + y) = \cos x \cos y - \sin x \sin y \)
\(\cos (60 + 45) = \cos 60 \cos 45 - \sin 60 \sin 45\)
= \(\frac{1}{2} \times \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2}\)
= \(\frac{\sqrt{2} - \sqrt{6}}{4}\)
Given that \(f : x \to \frac{2x - 1}{x + 2}, x \neq -2\), find \(f^{-1}\), the inverse of f ...
If cos x = -0.7133, find the values of x between 0\(^o\) and 360\(^o\) ...
Given n = 3, evaluate \(\frac{1}{(n-1)!} - \frac{1}{(n+1)!}\)...
Differentiate \(\frac{x}{x + 1}\) with respect to x. ...
Given that \(p = 4i + 3j\), find the unit vector in the direction of p....
Find the coefficient of \(x^{4}\) in the binomial expansion of \((1 - 2x)^{6}\)....