\((\frac{-5}{4}, \frac{3}{4})\)
\((\frac{3}{8}, -\frac{5}{8})\)
\((\frac{5}{8}, -\frac{3}{8})\)
\((\frac{5}{4}, -\frac{3}{4})\)
Correct answer is C
Equation : \((x - a)^{2} + (y - b)^{2} = r^{2}\)
Expanding : \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)
Given, \(4x^{2} + 4y^{2} - 5x + 3y - 2 = 0\)
Divide through by 4 to make the coefficient of \(x^{2}\) and \(y^{2}\) to be 1.
\(x^{2} + y^{2} - \frac{5}{4}x + \frac{3}{4}y - \frac{1}{2} = 0\)
Comparing, \(2a = \frac{5}{4} \implies a = \frac{5}{8}\)
\(2b = -\frac{3}{4} \implies b = -\frac{3}{8}\)
\((a, b) = (\frac{5}{8}, -\frac{5}{8})\)
Given that X : R \(\to\) R is defined by x = \(\frac{y + 1}{5 - y}\) , y \(\in\) R, find ...
Rationalize; \(\frac{1}{\sqrt{2 + 1}}\)...
Resolve \(\frac{3x - 1}{(x - 2)^{2}}, x \neq 2\) into partial fractions....
Differentiate \(x^{2} + xy - 5 = 0\)...
P, Q, R, S are points in a plane such that PQ = 8i - 5j, QR = 5i + 7j, RS = 7i + 3j and PS = x...