\(\frac{x}{x + 1}\)
\(\frac{-1}{x + 1}\)
\(\frac{1 - x}{(x + 1)^2}\)
\(\frac{1}{(x + 1)^2}\)
Correct answer is D
\(\frac{d}{dx}(\frac{x }{x + 1}\)) = \(\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}\)
u = x, \(\frac{du}{dx}\) = 1, v = x + 1, \(\frac{dv}{dx}\) = 1
= \(\frac{(x + 1)(1) - x (1)}{(x + 1)^2}\)
= \(\frac{x + 1 - x}{(x + 1)^2}\)
= \(\frac{1}{(x + 1)^2}\)
A linear transformation on the oxy plane is defined by \(P : (x, y) → (2x + y, -2y)\). Find \(P...
If α and β are the roots of 3x\(^2\) - 7x + 6 = 0, find \(\frac{1}{α}\) +...
Solve: \(4(2^{x^2}) = 8^{x}\)...
Evaluate \(\int_{1}^{2} [\frac{x^{3} - 1}{x^{2}}] \mathrm {d} x\)...
The table shows the operation * on the set {x, y, z, w}. * X Y Z W X Y Z X W ...