\(\frac{1}{54}\)
\(\frac{41}{54}\)
\(\frac{20}{27}\)
\(\frac{13}{54}\)
Correct answer is D
\(P(A)=\frac{1}{6},P(T)=\frac{1}{9}\)
Probability that only one of them will hit the target = \(P(A)\times P( \bar T ) + P( \bar A )\times P(T)\)
Where \(P( \bar T )\) is the probability that Tunde will not hit the target and \(P( \bar A )\) is the probability that Atta will not hit the target
\(P( \bar T )=1-\frac{1}{9}=\frac{8}{9}\)
\(P( \bar A )=1-\frac{1}{6}=\frac{5}{6}\)
Pr(only one) =\((\frac{1}{6}\times\frac{8}{9}) + (\frac{5}{6} \times \frac{1}{9}) =\frac{4}{27} + \frac{5}{54}\)
\(\therefore\) pr (only one) = \(\frac{13}{54}\)
Which of the following is the same as \(\sin (270 + x)°\)?...
For what values of m is \(9y^{2} + my + 4\) a perfect square?...
Adu's scores in five subjects in an examination are 85, 84, 83, 86...
If \(8^{x} ÷ (\frac{1}{4})^{y} = 1\) and \(\log_{2}(x - 2y) = 1\), find the value of (x ...
\(f(x) = p + qx\), where p and q are constants. If f(1) = 7 and f(5) = 19, find f(3)....
Find the equation of the line passing through (0, -1) and parallel to the y- axis. ...