JAMB Mathematics Past Questions & Answers - Page 123

611.

In this figure, PQ = PR = PS and SRT = 68<sup>o</sup>. Find QPS

A.

136o

B.

124o

C.

12o

D.

68o

Correct answer is A

Since PQRS is quadrilateral 2y + 2x = QPS = 360o

i.e. 2(y + x) + QPS = 360o

QPS = 360o - 2(y + x)

But x + y + 68o = 180o

x + y = 180o - 68o = 180o

x + y = 180o - 68o

= 112o

QPS = 360o - 2(112o)

360o - 224o = 136o

612.

In the figure above, find the value of y

A.

28o

B.

122o

C.

150o

D.

152o

Correct answer is B

ADB = 180o - 152o = 28o

28o + y + 30o = 180o

y = 180o - 58o

= 122o

613.

PMN and PQR are two secants of the circle MQTRN and PT is a tangent. If PNR = 110o and PMQ = 55o, find MPQ

A.

40o

B.

30o

C.

25o

D.

15o

Correct answer is D

PQM = 110o(Ext. < of a cyclic quad)

MPQ = 180o - (110 + 55)

= 180o - 165o

= 15o

614.

PMN and PQR are two secants of the circle MQTRN and PT is a tangent. If PM = 5cm, PN = 12cm and PQ = 4.8cm, calculate the respective lengths of PR and PT in centimeters

A.

7.3, 5.9

B.

7.7, 12.5

C.

12.5, 7.7

D.

5.9, 7.3

Correct answer is C

\(\frac{PQ}{PN} = \frac{PM}{PR} = \frac{QM}{NR}\)

\(\frac{4.8}{12} = \frac{5}{PR}\)

PR = \(\frac{5 \times 12}{4.8} = \frac{50}{4}\)

= 12.5

\(\frac{PQ}{PN} = \frac{PM}{PT} = \frac{TM}{NT}\)

\(\frac{PT}{12} = \frac{5}{PR}\)

PT2 = 60

PT = \(\sqrt{60}\)

= 7.746

= 7.7

615.

In the figure above, Find the value of x

A.

130o

B.

110o

C.

100o

D.

90o

Correct answer is A

No explanation has been provided for this answer.