JAMB Mathematics Past Questions & Answers - Page 133

661.

In the figure, PQRSTW is a regular hexagon. QS intersects RT at V. Calculate TVS

A.

60o

B.

90o

C.

120o

D.

30o

E.

80o

Correct answer is A

From the diagram, PQRSTW is a regular hexagon.

Hexagon is a six sided polygon.

Sum of interior angles of polygon = (2n - 4)90o = [2 x 6 - 4] x 90 = 8 x 90 = 720o

each angle = \(\frac{720^o}{6} = 120^o\) and TVS = \(\frac{120}{2} = 60^o\)

662.

Find the area of the shaded portion of the semicircular figure.

A.

\(\frac{r^2}{4}(4 \pi - 3 \sqrt{3})\)

B.

\(\frac{r^2}{4}(2 \pi - 3 \sqrt{3})\)

C.

\(\frac{1}{2}r^2 \pi\)

D.

\(\frac{1}{8}r^2 \sqrt{3}\)

E.

\(\frac{r^2}{4}(4 \pi - 3 \sqrt{3})\)

Correct answer is B

Asector = \(\frac{60}{360} \times \pi r^2\)

= \(\frac{1}{6} \pi r^2\)

A\(\bigtriangleup\) = \(\frac{1}{2}r^2 \sin 60^o\)

\(\frac{1}{2} r^2 \times \frac{\sqrt{3}}{2} = \frac{r^2\sqrt{3}}{4}\)

A\(\text{shaded portion}\) = Asector -
A\(\bigtriangleup\)

= (\(\frac{1}{6} \pi r^2 - \frac{r^2\sqrt{3}}{4})^3\)

= \(\frac{\pi r^2}{2} - \frac{3r^2\sqrt{3}}{4}\)

= \(\frac{r^2}{4}(2 \pi - 3 \sqrt{3})\)

663.

Using \(\bigtriangleup\)XYZ in the figure, find XYZ

A.

29o

B.

31o

C.

31o 20'

D.

31o 18'

Correct answer is C

\(\frac{\sin y}{3} = \frac{\sin 120^o}{5}\)

sin 120o = sin 60o

5 sin y = 3 sin 60o

sin y = \(\frac{3 \sin 60^o}{5}\)

\(\frac{3 \times 0.866}{5}\)

= \(\frac{2.598}{5}\)

y = sin-1 0.5196 = 30o 18'

664.

What is the volume of this regular three dimensional figure?

A.

160cm2

B.

48cm2

C.

120cm2

D.

40cm2

Correct answer is B

Volume of the three dimensional figures = v = A x h

A = \(\frac{1}{2}\) x 4 x 3

= 6cm2

V = 6 x 8

= 48cm2

665.

In the figure PT is a tangent to the circle with centre at O. If PQT = 30o, find the value of PTO

A.

30o

B.

50o

C.

24o

D.

12o

E.

60o

Correct answer is B

FROM the diagram, PQT = 50o

PTQ = 50o(opposite angles are supplementary)