JAMB Mathematics Past Questions & Answers - Page 169

841.

Multiply x2 + x + 1 by x2 - x + 1

A.

x4 - x + x2

B.

x4 - x2 + x2

C.

x4 + x2 + 1

D.

x4 + x2

Correct answer is C

(x2 + x + 1)( x2 - x + 1)

= x2(x2 + x + 1) - x(x2 + x + 1) + (x3 + x + 1)

= x4 - x3 + x2 + x3 - x2 - x + 1

= x4 + x2 + 1

842.

If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r.

A.

b2 = aV + 2cr

B.

b2 = ar + 2c2r

C.

b2 = a2 = \(\frac{1}{2}\) cr2

D.

b2 = \(\frac{1}{2}\)ar2 + c

E.

b2 = 2cr - a2

Correct answer is E

b = a + cp....(i)

r = ab + \(\frac{1}{2}\)cp2.....(ii)

expressing b2 in terms of a, c, r, we shall first eliminate p which should not appear in our answer from eqn, (i)

b - a = cp = \(\frac{b - a}{c}\)

sub. for p in eqn.(ii)

r = ab + \(\frac{1}{2}\)c\(\frac{(b - a)^2}{\frac{ab + b^2 - 2ab + a^2}{2c}}\)

2cr = 2ab + b2 - 2ab + a2

b2 = 2cr - a2

843.

Simplify T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\)

A.

\(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)

B.

\(\frac{R_1 R_2 R_3}{R_2R_3 + R_1R_2 + 4R_1 R_2}\)

C.

\(\frac{16R_1 R_2 R_3}{R_2R_3 + R_1R_2 + R_1 R_2}\)

D.

\(\frac{4R_1 R_2 R_3}{4R_2R_3 + R_1R_2 + 4R_1 R_2}\)

Correct answer is A

T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\) = \(\frac{4R_2}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{4}{R_3}}\)

= \(\frac{4R_2}{\frac{R_2R_3 + R_1R_3 + 4R_1R_2}{R_1R_2R_3}}\)

= \(\frac{4R_2 \times R_1 R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)

= \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1R_2}\)

T = \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)

844.

The first term of an Arithmetic progression is 3 and the fifth term is 9. Find the number of terms in the progression if the sum is 81

A.

12

B.

27

C.

9

D.

4

E.

36

Correct answer is C

1st term a = 3, 5th term = 9, sum of n = 81

nth term = a + (n - 1)d, 5th term a + (5 - 1)d = 9

3 + 4d = 9

4d = 9 - 3

d = \(\frac{6}{4}\)

= \(\frac{3}{2}\)

= 6

Sn = \(\frac{n}{2}\)(6 + \(\frac{3}{4}\)n - \(\frac{3}{2}\))

81 = \(\frac{12n + 3n^2}{4}\) - 3n

= \(\frac{3n^2 + 9n}{4}\)

3n2 + 9n = 324

3n2 + 9n - 324 = 0

By almighty formula positive no. n = 9
= 3

845.

Show that \(\frac{\sin 2x}{1 + \cos x}\) + \(\frac{sin2 x}{1 - cos x}\) is

A.

sin x

B.

cos2x

C.

2

D.

3

Correct answer is C

\(\frac{\sin^{2} x}{1 + \cos x} + \frac{\sin^{2} x}{1 - \cos x}\)

\(\frac{\sin^{2} x (1 - \cos x) + \sin^{2} x (1 + \cos x)}{1 - \cos^{2} x}\)

= \(\frac{\sin^{2} x - \cos x \sin^{2} x + \sin^{2} x + \sin^{2} x \cos x}{\sin^{2} x}\)

(Note: \(\sin^{2} x + \cos^{2} x = 1\)).

= \(\frac{2 \sin^{2} x}{\sin^{2} x}\)

= 2.