JAMB Mathematics Past Questions & Answers - Page 189

941.

The lengths of the sides of a right angled triangle are (3x + 1)cm, (3x - 1)cm and xcm. Find x

A.

2

B.

6

C.

18

D.

12

E.

5

Correct answer is D

\((3x + 1)^{2} = (3x - 1)^{2} + x^{2}\) (Pythagoras's theorem)

\(9x^{2} + 6x + 1 = 9x^{2} - 6x + 1 + x^{2}\)

x2 - 12x = 0

x(x - 12) = 0

x = 0 or 12

The sides cannot be 0 hence x = 12.

942.

Simplify \(\frac{x - 7}{x^2 - 9}\) x \(\frac{x^2 - 3x}{x^2 - 49}\)

A.

\(\frac{x}{(x - 3)(x - 7)}\)

B.

\(\frac{x}{(x + 3)(x - 7)}\)

C.

\(\frac{x}{(x + 3)(x + 7)}\)

D.

\(\frac{x}{(x - 3)(x + 7)}\)

Correct answer is C

\(\frac{x - 7}{x^2 - 9}\) x \(\frac{x^2 - 3x}{x^2 - 49}\)

= \(\frac{x - 7}{(x - 3)(x + 3)}\) x \(\frac{x(x - 3)}{(x - 7)(x + 7)}\)

= \(\frac{x}{(x + 3)(x + 7)}\)

943.

y varies partly as the square of x and partly as the inverse of the square root of x.Write down the expression for y if y = 2 when x = 1 and y = 6 when x = 4

A.

y = \(\frac{10x^2}{31} + \frac{52}{31\sqrt{x}}\)

B.

y = x2 + \(\frac{1}{\sqrt{x}}\)

C.

y = x2 + \(\frac{1}{x}\)

D.

y = \(\frac{x^2}{31} + \frac{1}{31\sqrt{x}}\)

Correct answer is A

y = kx2 + \(\frac{c}{\sqrt{x}}\)

y = 2when x = 1

2 = k + \(\frac{c}{1}\)

k + c = 2

y = 6 when x = 4

6 = 16k + \(\frac{c}{2}\)

12 = 32k + c

k + c = 2

32k + c = 12

= 31k + 10

k = \(\frac{10}{31}\)

c = 2 - \(\frac{10}{31}\)

= \(\frac{62 - 10}{31}\)

= \(\frac{52}{31}\)

y = \(\frac{10x^2}{31} + \frac{52}{31\sqrt{x}}\)

944.

The value of (0.03)3 - (0.02)3 is

A.

0.019

B.

0.0019

C.

0.00019

D.

0.000019

E.

0.000035

Correct answer is D

Using the method of difference of two cubes,

\(a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})\)

\((0.03)^{3} - (0.02)^{3} = (0.03 - 0.02)((0.03)^{2} + (0.03)(0.02) + (0.02)^{2}\)

= \((0.01)(0.0009 + 0.0006 + 0.0004)\)

= \(0.01 \times 0.0019\)

= \(0.000019\)

945.

Make T the subject of the equation \(\frac{av}{1 - v}\) = \(\sqrt{\frac{2v + T}{a + 2T}}\)

A.

T = \(\frac{3av}{1 - v}\)

B.

T = \(\frac{1 + v}{2a^2v^3}\)

C.

T = \(\frac{2v(1 - v)^3 - a^4v^3}{2a^3v^3 + (1 - v)^2}\)

D.

\(\frac{2v(1 - v)^3 - a^4 v^3}{2a^3v^ 3 - (1 - v)^3}\)

Correct answer is D

\(\frac{av}{1 - v}\) = \(\sqrt{\frac{2v + T}{a + 2T}}\)

\(\frac{(av)^3}{(1 - v)^3}\) = \(\frac{2v + T}{a + 2T}\)

\(\frac{a^3v^3}{(1^3 - v)^3}\) = \(\frac{2v + T}{a + 2T}\)

= \(\frac{2v(1 - v)^3 - a^4 v^3}{2a^3v^ 3 - (1 - v)^3}\)