If x = 3 - \(\sqrt{3}\), find x2 + \(\frac{36}{x^2}\)
9
18
24
27
Correct answer is C
x = 3 - \(\sqrt{3}\)
x2 = (3 - \(\sqrt{3}\))2
= 9 + 3 - 6\(\sqrt{34}\)
= 12 - 6\(\sqrt{3}\)
= 6(2 - \(\sqrt{3}\))
∴ x2 + \(\frac{36}{x^2}\) = 6(2 - \(\sqrt{3}\)) + \(\frac{36}{6(2 - \sqrt{3})}\)
6(2 - \(\sqrt{3}\)) + \(\frac{6}{2 - \sqrt{3}}\) = 6(- \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}\)
= 6(2 - \(\sqrt{3}\)) + \(\frac{6(2 + \sqrt{3})}{4 - 3}\)
6(2 - \(\sqrt{3}\)) + 6(2 + \(\sqrt{3}\)) = 12 + 12
= 24
Simplify 5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\)
17\(\sqrt{4}\)
4\(\sqrt{17}\)
17\(\sqrt{2}\)
12\(\sqrt{4}\)
Correct answer is C
5\(\sqrt{18}\) - 3\(\sqrt{72}\) + 4\(\sqrt{50}\) = 5(3\(\sqrt{2}\)) - 3(6\(\sqrt{2}\)) + 4(5\(\sqrt{2}\))
15\(\sqrt{2}\) - 18\(\sqrt{2}\) + 20\(\sqrt{2}\) = 35\(\sqrt{2}\) - 18\(\sqrt{2}\)
= 17\(\sqrt{2}\)
Simplify \(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\)
4.0 x 10-3
5.0 x 10-2
2.0 x 10-1
5.0 x 10-3
Correct answer is A
\(\frac{(1.25 \times 10^{-4}) \times (2.0 \times 10^{-1})}{(6.25 \times 10^5)}\) = \(\frac{1.25 \times 2}{6.25}\) x 104 - 1 - 5
\(\frac{2.50}{6.25}\) x 10-2 = \(\frac{250}{625}\) x 10-2
0.4 x 10-2 = 4.0 x 10-3
What is the value of x satisfying the equation \(\frac{4^{2x}}{4^{3x}}\) = 2?
-2
-\(\frac{1}{2}\)
\(\frac{1}{2}\)
2
Correct answer is B
\(\frac{4^{2x}}{4^{3x}}\) = 2
42x - 3x = 2
4-x = 2
(22)-x
= 21
Equating coefficients: -2x = 1
x = -\(\frac{1}{2}\)
Evaluate \(\log_{b} a^{n}\) if \(b = a^{\frac{1}{n}}\).
n2
n
\(\frac{1}{n}\)
\(\frac{1}{n^2}\)
Correct answer is A
Let \(\log_{b} a^{n} = x\)
\(\therefore a^{n} = b^{x}\)
\(a^{n} = (a^{\frac{1}{n}})^{x}\)
\(a^{n} = a^{\frac{x}{n}} \implies n = \frac{x}{n}\)
\(x = n^{2}\)