JAMB Mathematics Past Questions & Answers - Page 267

1,331.

A binary operation \(\ast\) is defined on a set of real numbers by x \(\ast\) y = xy for all real values of x and y. If x \(\ast\) 2 = x. Find the possible values of x

A.

0, 1

B.

1, 2

C.

2, 2

D.

0, 2

Correct answer is A

x \(\ast\) y = xy

x \(\ast\) 2 = x2

x \(\ast\) 2 = x

∴ x2 - x = 0

x(x - 1) = 0

x = 0 or 1

1,332.

If x is negative, what is the range of values of x within which \(\frac{x + 1}{3}\) > \(\frac{1}{X + 3}\)

A.

3 < x < 4

B.

-4 < x < -3

C.

-2 < x < -1

D.

-3 < x < 0

Correct answer is B

\(\frac{x + 1}{3}\) > \(\frac{1}{X + 3}\) = \(\frac{x + 1}{3}\) > \(\frac{x + 3}{X + 3}\)

= (x + 1)(x + 3)2 > 3(x + 3) = (x + 1)[x2 + 6x + 9] > 3(x + 3)

x3 + 7x2 + 15x + 9 > 3x + 9 = x3 + 7x2 + 12x > 0

= x(x + 3)9x + 4) > 0

Case 1 (+, +, +) = x > 0 , x + 3 > 0, x + 4 > 0

= x > -4 (solution only)

Case 2 (+, -, -) = x > 0, x + 4 < 0

= x > 0, x < -3, x < -4 = x < -3(solution only)

Case 3 (-, +, -) = x < 0, x > -3, x < -4 = x < -0, -4 < x < 3(solutions)

Case 4 (-, -, +) = x < 0, x + 3 < 0, x + 4 > 0

= x < 0, x < -5, x > -4 = x < -0, -4 < x < -3(solution)

combining the solutions -4 < x < -3

1,333.

Solve the inequality y2 - 3y > 18

A.

-3 < y < 6

B.

y < -3 or y > 6

C.

y > -3 or y > 6

D.

y < 3 or y < 6

Correct answer is A

y2 - 3y > 18 = 3y - 18 > 0

y2 - 6y + 3y - 18 > 0 = y(y - 6) + 3 (y - 6) > 0

= (y + 3) (y - 6) > 0

Case 1 (+, +) \(\to\) (y + 3) > 0, (y - 6) > 0

= y > -3 y > 6

Case 2 (-, -) \(\to\) (y + 3) < 0, (y - 6) < 0

= y < -3, y < 6

Combining solution in case 1 and Case 2

= x < -3y < 6

= -3 < y < 6

1,334.

Simplify \(\frac{1}{p}\) - \(\frac{1}{q}\) \(\div\) \(\frac{p}{q}\) - \(\frac{q}{p}\)

A.

\(\frac{1}{p - q}\)

B.

\(\frac{-1}{p + q}\)

C.

\(\frac{1}{pq}\)

D.

\(\frac{1}{pq(p - q)}\)

Correct answer is B

\(\frac{1}{p}\) - \(\frac{1}{q}\) \(\div\) \(\frac{p}{q}\) - \(\frac{q}{p}\) = \(\frac{q - p}{pq}\) ÷ \(\frac{p^2 - q^2}{pq}\)

\(\frac{q - p}{pq}\) x \(\frac{pq}{p^2q^2}\) = \(\frac{q - p}{p^2 - q^2}\)

\(\frac{-(p - q)}{(p + q)(p - q)}\)

= \(\frac{-1}{p + q}\)

1,335.

Divide the expression x3 + 7x2 - x - 7 by -1 + x2

A.

-x3 + 7x2 - x - 7

B.

-x3 = 7x + 7

C.

x - 7

D.

x + 7

Correct answer is D

No explanation has been provided for this answer.