JAMB Mathematics Past Questions & Answers - Page 277

1,381.

Simplify \(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)

A.

\(\frac{3}{5}\)

B.

\(\frac{2}{5}\)

C.

\(\frac{2m - u}{5m + u}\)

D.

\(\frac{m - 2u}{m + 5u}\)

Correct answer is A

\(\frac{(2m - u)^2 - (m - 2u)^2}{5m^2 - 5u^2}\)

= \(\frac{2m - u + m - 2u)(2m - u - m + 2u)}{5(m + u)(m - u)}\)

= \(\frac{3(m - u)(m + u)}{5(m + u)(m - u)}\)

= \(\frac{3}{5}\)

1,382.

Given that \(\sqrt{2} = 1.414\), find without using tables, the value of \(\frac{1}{\sqrt{2}}\)

A.

0.141

B.

0.301

C.

0.667

D.

0.707

Correct answer is D

\(\frac{1}{\sqrt{2}}\) = \(\frac{1}{\sqrt{2}}\) x \(\frac{\sqrt{2}}{\sqrt{2}}\)

= \(\frac{\sqrt{2}}{2}\)

= \(\frac{1.414}{2}\)

= 0.707

1,383.

Simplify \(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)

A.

5√3

B.

6√3

C.

8√3

D.

18√3

Correct answer is B

\(\sqrt{48}\) - \(\frac{9}{\sqrt{3}}\) + \(\sqrt{75}\)

Rearrange = \(\sqrt{48}\) + \(\sqrt{75}\) - \(\frac{9}{\sqrt{3}}\)

= (√16 x √3) + (√25 x √3) - \(\frac{9}{\sqrt{3}}\)

=4√3 + 5√3 - \(\frac{9}{\sqrt{3}}\)

Rationalize \(\to\) 9√3 = \(\frac{9}{\sqrt{3}}\) x \(\frac{\sqrt{3}}{\sqrt{3}}\)

= \(\frac{9\sqrt{3}}{\sqrt{9}}\) - \(\frac{9\sqrt{3}}{\sqrt{3}}\)

= 3√3

1,384.

Without using table, solve the equation 8x-2 = \(\frac{2}{25}\)

A.

4

B.

6

C.

8

D.

10

Correct answer is D

8x-2 = \(\frac{2}{25}\)

= 200x-2 = 2

= 100x-2 = 1

x-2 = \(\frac{1}{100}\)

x-2 = 10-2

x = 10

1,385.

Evaluate \(\frac{log_5 (0.04)}{log_3 18 - log_3 2}\)

A.

1

B.

-1

C.

\(\frac{2}{3}\)

D.

-\(\frac{2}{3}\)

Correct answer is B

\(\frac{log_5 0.04}{log_3 18 - log_3 2}\)

= \(\frac{log_5 0.04}{log_3(\frac{18}{2})}\)

= \(\frac{log_5 0.04}{log_3 9}\)

= \(\frac{-2}{2}\)

= -1

Let log5 0.04 = x

5x = 0.04

x = \(\frac{4}{100}\) = 5-2

Let log3 9 = z

32 = 32

z = 3