JAMB Mathematics Past Questions & Answers - Page 288

1,436.

\(\frac{d}{dx}\) cos(3x\(^2\) - 2x) is equal to

A.

-sin(6x - 2)

B.

-sin(3x2 - 2x)dx

C.

(6x - 2) sin(3x2 - 2x)

D.

-(6x - 2)sin(3x2 - 2x)

Correct answer is D

Let \(3x^{2} - 2x = u\)

\(y = \cos u \implies \frac{\mathrm d y}{\mathrm d u} = - \sin u\)

\(\frac{\mathrm d u}{\mathrm d x} = 6x - 2\)

\(\therefore \frac{\mathrm d y}{\mathrm d x} = (6x - 2) . - \sin u\)

= \(- (6x - 2) \sin (3x^{2} - 2x)\)

1,437.

Differentiate \(\frac{6x^3 - 5x^2 + 1}{3x^2}\) with respect to x

A.

\(\frac{2 + 2}{3x^3}\)

B.

2 + \(\frac{1}{6x}\)

C.

2 - \(\frac{2}{3x^3}\)

D.

\(\frac{1}{5}\)

Correct answer is C

\(\frac{6x^3 - 5x^2 + 1}{3x^2}\)

let y = 3x2

y = \(\frac{6x^3}{3x^2}\) - \(\frac{6x^2}{3x^2}\) + \(\frac{1}{3x^2}\)

Y = 2x - \(\frac{5}{3}\) + \(\frac{1}{3x^2}\)

\(\frac{dy}{dx}\) = 2 + \(\frac{1}{3}\)(-2)x-3

= 2 - \(\frac{2}{3x^3}\)

1,438.

In a triangle XYZ, if < ZYZ is 60, XY = 3cm and YZ = 4cm, calculate the length of the sides XZ.

A.

√23cm

B.

√13cm

C.

2√5cm

D.

2√3cm

Correct answer is B

(XZ)2 = 32 + 42 - 2 x 3 x 4 cos60o

= 25 - 24\(\frac{1}{2}\)

XZ = √13cm

1,439.

The angle of elevation of a building from a measuring instrument placed on the ground is 30°. If the building is 40m high, how far is the instrument from the foot of the building?

A.

\(\frac{20}{√3}\)m

B.

\(\frac{40}{√3}\)m

C.

20√3m

D.

40√3m

Correct answer is D

\(\frac{40}{x}\) = tan 30°

x = \(\frac{40}{tan 30}\)

= \(\frac{40}{1\sqrt{3}}\)

= 40√3m

1,440.

Find the distance between the point Q (4,3) and the point common to the lines 2x - y = 4 and x + y = 2

A.

3√10

B.

3√5

C.

√26

D.

√13

Correct answer is D

2x - y .....(i)

x + y.....(ii)

from (i) y = 2x - 4

from (ii) y = -x + 2

2x - 4 = -x + 2

x = 2

y = -x + 2

= -2 + 2

= 0

\(x_1\) = 2

\(y_1\) = 0

\(x_2\) = 4

\(y_2\) = 3

Hence, dist. = \(\sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}\)

= \(\sqrt{(3 - 0)^2 + (4 - 2)^2}\)

= \(\sqrt{3^2 + 2^2}\)

= \(\sqrt{13}\)