JAMB Mathematics Past Questions & Answers - Page 292

1,456.

What value of g will make the expression 4x2 - 18xy + g a perfect square?

A.

9

B.

\(\frac{9y^2}{4}\)

C.

\(81y^2\)

D.

\(\frac{18y^2}{4}\)

Correct answer is D

4x2 - 18xy + g = g \(\to\) (\(\frac{18y}{4}\))2

= \(\frac{18y^2}{4}\)

1,457.

Make F the subject of the formula t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

A.

\(\frac{gv-t^2}{gt^2}\)

B.

\(\frac{gt^2}{gv-t^2}\)

C.

\(\frac{v}{\frac{1}{t^2} - \frac{1}{g}}\)

D.

\(\frac{gv}{t^2 - g}\)

Correct answer is B

t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

t2 = \(\frac{v}{\frac{1}{f} + \frac{1}{g}}\)

= \(\frac{vfg}{ftg}\)

\(\frac{1}{f} + \frac{1}{g}\) = \(\frac{v}{t^2}\)

= (g + f)t2 = vfg

gt2 = vfg - ft2

gt2 = f(vg - t2)

f = \(\frac{gt^2}{gv-t^2}\)

1,458.

Find the minimum value of X2 - 3x + 2 for all real values of x

A.

-\(\frac{1}{4}\)

B.

-\(\frac{1}{2}\)

C.

\(\frac{1}{4}\)

D.

\(\frac{1}{2}\)

Correct answer is A

y = X2 - 3x + 2, \(\frac{dy}{dx}\) = 2x - 3

at turning pt, \(\frac{dy}{dx}\) = 0

∴ 2x - 3 = 0

∴ x = \(\frac{3}{2}\)

\(\frac{d^2y}{dx^2}\) = \(\frac{d}{dx}\)(\(\frac{d}{dx}\))

= 270

∴ ymin = 2\(\frac{3}{2}\) - 3\(\frac{3}{2}\) + 2

= \(\frac{9}{4}\) - \(\frac{9}{2}\) + 2

= -\(\frac{1}{4}\)

1,459.

Solve the simultaneous equations \(\frac{2}{x} - {\frac{3}{y}}\) = 2, \(\frac{4}{x} + {\frac{3}{y}}\) = 10

A.

x = \(\frac{3}{2}\), y = \(\frac{3}{2}\)

B.

x = \(\frac{1}{2}\), y = \(\frac{3}{2}\)

C.

x = \(\frac{-1}{2}\), y = \(\frac{-3}{2}\)

D.

x = \(\frac{1}{3}\), y = \(\frac{3}{2}\)

Correct answer is B

\(\frac{2}{x} - {\frac{3}{y}}\) = 2.....(1)

\(\frac{4}{x} + {\frac{3}{y}}\) = 10 ... (2)

(1) + (2):

\(\frac{6}{x}\) = 12 \(\to\) x = \(\frac{6}{12}\)

x = \(\frac{1}{2}\)

put x = \(\frac{1}{2}\) in equation (i)

= 4 - \(\frac{3}{y}\) = 2

= 4 - 2

= \(\frac{3}{y}\)

therefore y = \(\frac{3}{2}\)

1,460.

If the function f(fx) = x3 + 2x2 + qx - 6 is divisible by x + 1, find q

A.

-5

B.

-2

C.

2

D.

5

Correct answer is A

x + 1 = 0, x = -1; f(x) = x3 + 2x2 + qx - 6

0 = -1 + 2 - q - 6

q = -5