p
q
r
s
Correct answer is B
The identity element (e) under an operation, say \(\otimes\), is the element such that for any given element under the operation, say a,
\(a \otimes e = e \otimes a = a\)
From the table, q is the identity element.
\(p \otimes q = q \otimes p = p\)
Same as all through.
\(\frac{1}{4}\)
\(\sqrt{\frac{3}{2}}\)
\(\frac{1}{\sqrt{3}}\)
\(\frac{1}{\sqrt{2}}\)
Correct answer is B
Let the G.p be a, ar, ar2, S3 = \(\frac{1}{2}\)S
a + ar + ar2 = \(\frac{1}{2}\)(\(\frac{a}{1 - r}\))
2(1 + r + r)(r - 1) = 1
= 2r3 = 3
= r3 = \(\frac{3}{2}\)
r(\(\frac{3}{2}\))\(\frac{1}{3}\) = \(\sqrt{\frac{3}{2}}\)
-4, 2
-3, \(\frac{4}{11}\)
-\(\frac{4}{11}\), 2
5, -3
Correct answer is C
2p - 10 = \(\frac{p + 1 + 1 - 4P^2}{2}\) (Arithmetic mean)
= 2(2p - 100 = p + 2 - 4P2)
= 4p - 20 = p + 2 - 4p2
= 4p2 + 3p - 22 = 0
= (p - 2)(4p + 11) = 0
∴ p = 2 or -\(\frac{4}{11}\)
0 > -\(\frac{1}{6}\)
x > 0
0 < x < 4
0 < x < \(\frac{1}{6}\)
Correct answer is D
\(\frac{1}{3x}\) + \(\frac{1}{2}\) > \(\frac{1}{4x}\)
= \(\frac{2 + 3x}{6x}\) > \(\frac{1}{4x}\)
= 4(2 + 3x) > 6x = 12x2 - 2x = 0
= 2x(6x - 1) > 0 = x(6x - 1) > 0
Case 1 (-, -) = x < 0, 6x -1 < 0
= x < 0, x < \(\frac{1}{6}\) = x < \(\frac{1}{6}\) (solution)
Case 2 (+, +) = x > 0, 6x -1 > 0 = x > 0, x > \(\frac{1}{6}\)
Combining solutions in cases(1) and (2)
= x > 0, x < \(\frac{1}{6}\) = 0 < x < \(\frac{1}{6}\)
Express in partial fractions \(\frac{11x + 2}{6x^2 - x - 1}\)
\(\frac{1}{3x - 1}\) + \(\frac{3}{2x + 1}\)
\(\frac{3}{3x + 1}\) - \(\frac{1}{2x - 1}\)
\(\frac{3}{3x + 1}\) - \(\frac{1}{2x - 1}\)
\(\frac{1}{3x + 1}\) + \(\frac{3}{2x - 1}\)
Correct answer is D
\(\frac{11x + 2}{6x^2 - x - 1}\) = \(\frac{11x + 2}{(3x + 1)(2x - 1)}\)
= \(\frac{A}{3x + 1}\) + \(\frac{B}{2x - 1}\)
11x + 2 = A(2x - 1) + B(3x + 1)
put x = \(\frac{1}{2}\)
\(\frac{15}{2} = \frac{5}{2}B\)
B = 3.
put x = \(-\frac{1}{3}\)
\(-\frac{5}{3} = \frac{-5}{3}\)A \(\implies\) A = 1
∴ \(\frac{11x +2}{6x^2 - x - 1}\) = \(\frac{1}{3x + 1}\) + \(\frac{3}{2x - 1}\)