14 years
20 years
12 years
16 years
Correct answer is D
M + L = 28,
M : L = 600 : 800
= 3 : 4
\(\frac{M}{L}\) = \(\frac{3}{4}\) \(\to\) M = \(\frac{3}{4}\)L
\(\frac{3}{4}\)L + L = 28
\(\frac{7L}{4}\) = 28
L = \(\frac{4 \times 28}{7}\)
= 16
If y = (1 + x)2, find \(\frac{dy}{dx}\)
x - 1
2 + 2x
1 + 2x
2x - 1
Correct answer is B
If y = (1 + x)2, find \(\frac{dy}{dx}\)
y = (1 + x)2
\(\frac{dy}{dx}\) = 2(1 + x)
= 2 + 2x
184m
185m
186m
187m
Correct answer is D
Tan 20° = \(\frac{68m}{x}\)
x tan 20° = 68
x = \(\frac{68}{tan 20}\) = \(\frac{68}{0.364}\)
x = 186.8
= 187m
Calculate the distance between points L(-1, -6) and M(-3, -5)
√5
2√3
√20
√50
Correct answer is A
L\(\begin{pmatrix} x_1 & y_1 \\ -1 & -6 \end{pmatrix}\) m L\(\begin{pmatrix} x_2 & y_2 \\ -3 & -5 \end{pmatrix}\)
D = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
D = \(\sqrt{(-3 - (-1)^2 + (-5 -(-6)^2}\)
D = \(\sqrt{(-3 + 1)^2 + (-5 + 6)^2}\)
D = \(\sqrt{(-2)^2 + 1^2}\)
D = \(\sqrt{4 + 1}\)
D = \(\sqrt{5}\)
-\(\frac{1}{8}\)
\(\frac{3}{8}\)
\(\frac{5}{8}\)
\(\frac{1}{4}\)
Correct answer is D
-2p + r = 1.......(i)
2p + 3r = 0.......(ii)
r - 1 + 2p ........(iii)
2p + 3(1 + 2p) = 0
2p + 3(1 + 2p) = 0
2p + 3 + 6p = 0
3 - 8p = 0 \(\to\) 8p = 3
p = \(\frac{3}{8}\)
6 = 1 - 2 \(\frac{3}{8}\)
= 1 - \(\frac{6}{8}\)
\(\frac{8 - 6}{8}\) = \(\frac{2}{8}\)
= \(\frac{1}{4}\)