-3, -2
-5, -3
-2, -5
-3, -5
Correct answer is D
\(\begin{pmatrix} 1 & 0 \\ -1 & -1\\ 2 & 2 \end{pmatrix}\) + \(\begin{pmatrix} x & 1 \\ -1 & 0\\ y & -2 \end{pmatrix}\) = \(\begin{pmatrix} -2 & 1 \\ -2 & -1\\ -3 & 0 \end{pmatrix}\)
therefore, (x, y) = (-3, -5) respectively
What value of x will make the function x(4 - x) a maximum?
4
3
2
1
Correct answer is C
x(4 - x)
4x - x2
\(\frac{dy}{dx}\) = 4 - 2x
\(\frac{dy}{dx}\) = 0
2x = 4
x = \(\frac{4}{2}\)
= 2
Determine the value of x for which (x2 - 1)>0
x < -1 or x > 1
-1 < x < 1
x > 0
x < -1
Correct answer is A
x(x - 1) > 0 x < -1 or x > 1
W is directly proportional to U. If W = 5 when U = 3, find U when W = \(\frac{2}{7}\)
\(\frac{6}{35}\)
\(\frac{10}{21}\)
\(\frac{21}{10}\)
\(\frac{35}{6}\)
Correct answer is A
W \(\alpha\) U
W = ku
u = \(\frac{w}{k}\); \(\frac{2}{7}\) x \(\frac{3}{5}\)
= \(\frac{6}{35}\)
Find the standard deviation of 2, 3, 5 and 6
√6
√10
√\(\frac{2}{5}\)
√\(\frac{5}{2}\)
Correct answer is D
\(\begin{array}& x & x - \bar{x} & (x - \bar{x})^2 \\2 & -2 & 4 \\ 3 & -1 & 1 \\ 5 & 1 & 1 \\ 6 & 2 & 4\\ \hline \sum x = 16 & & \sum (x - \bar{x}^2) = 10 \end{array}\)
___________________________________
\(\bar{x}\) = \(\frac{\sum x }{N}\)
= \(\frac{16}{4}\)
= 4
S = \(\sqrt{\frac {(x - \bar{x})^2}{N}}\)
= \(\sqrt{\frac {(10)}{4}}\)
= \(\sqrt{\frac {(5)}{2}}\)