Evaluate \(\begin{vmatrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \end{vmatrix}\)
5y - 2x -18 = 0
102
-102
-42
Correct answer is C
\(\begin{vmatrix} 2 & 0 & 5 \\ 4 & 6 & 3 \\ 8 & 9 & 1 \end{vmatrix}\)
= 2(6 - 27) - 0(4 - 24) + 5(36 - 48)
= 2(-21) - 0 + 5(-12)
= -42 + 5(-12)
= -42 - 60
= -102
Find the sum to infinity of the following series. 0.5 + 0.05 + 0.005 + 0.0005 + .....
\(\frac{5}{8}\)
\(\frac{5}{7}\)
\(\frac{5}{11}\)
\(\frac{5}{9}\)
Correct answer is D
Using S\(\infty\) = \(\frac{a}{1 - r}\)
r = \(\frac{0.05}{0.5}\) = \(\frac{1}{10}\)
S\(\infty\) = \(\frac{0.5}{{\frac{1}{10}}}\)
= \(\frac{0.5}{({\frac{9}{10}})}\)
= \(\frac{0.5 \times 10}{9}\)
= \(\frac{5}{9}\)
Solve the inequalities -6 \(\leq\) 4 - 2x < 5 - x
-1 < x < 5
-1 < x \(\leq\) 5
-1 \(\leq\) x \(\leq\) 6
-1 \(\leq\) x < 6
Correct answer is B
-6 \(\leq\) 4 - 2x < 5 - x
split inequalities into two and solve each part as follows:
-6 \(\leq\) 4 - 2x = -6 - 4 \(\leq\) -2x
-10 \(\leq\) -2x
\(\frac{-10}{-2}\) \(\geq\) \(\frac{-2x}{-2}\)
giving 5 \(\geq\) x or x \(\leq\) 5
4 - 2x < 5 - x
-2x + x < 5 - 4
-x < 1
\(\frac{-x}{-1}\) > \(\frac{1}{-1}\)
giving x > -1 or -1 < x
Combining the two results, gives -1 < x \(\leq\) 5
x < \(\frac{3}{2}\)
x > \(\frac{3}{2}\)
x < -\(\frac{3}{2}\)
x > -\(\frac{3}{2}\)
Correct answer is B
\(\frac{1}{2}\)x + \(\frac{1}{4}\) > \(\frac{1}{3}\)x + \(\frac{1}{2}\)
Multiply through by through by the LCM of 2, 3 and 4
12 x \(\frac{1}{2}\)x + 12 x \(\frac{1}{4}\) > 12 x \(\frac{1}{3}\)x + 12 x \(\frac{1}{2}\)
6x + 3 > 4x + 6
6x - 4x > 6 - 3
2x > 3
\(\frac{2x}{2}\) > \(\frac{3}{2}\)
x > \(\frac{3}{2}\)
If x is inversely proportional to y and x = 2\(\frac{1}{2}\) when y = 2, find x if y = 4
4
5
1\(\frac{1}{4}\)
2\(\frac{1}{4}\)
Correct answer is C
x \(\alpha\) \(\frac{1}{y}\) .........(1)
x = k x \(\frac{1}{y}\) .........(2)
When x = 2\(\frac{1}{2}\)
= \(\frac{5}{2}\), y = 2
(2) becomes \(\frac{5}{2}\) = k x \(\frac{1}{2}\)
giving k = 5
from (2), x = \(\frac{5}{y}\)
so when y =4, x = \(\frac{5}{y}\) = 1\(\frac{1}{4}\)