What is the size of each interior angle of a 12-sided regular polygon?
120o
150o
30o
180o
Correct answer is B
Interior angle = (n - 2)180
but, n = 12
= (12 -2)180
= 10 x 180
= 1800
let each interior angle = x
x = \(\frac{(n - 2)180}{n}\)
x = \(\frac{1800}{12}\)
= 150o
The inverse of matrix N = \(\begin{vmatrix} 2 & 3 \\
1 & 4\end{vmatrix}\) is
\(\frac{1}{5}\) \(\begin{vmatrix} 2 & 1 \\ 3 & 4\end{vmatrix}\)
\(\frac{1}{5}\) \(\begin{vmatrix} 4 & -3 \\ -1 & 2\end{vmatrix}\)
\(\frac{1}{5}\) \(\begin{vmatrix} 2 & -1 \\ -3 & 4\end{vmatrix}\)
\(\frac{1}{5}\) \(\begin{vmatrix} 4 & 3 \\ 1 & 2\end{vmatrix}\)
Correct answer is B
N = [2 3]
N-1 = \(\frac{adj N}{|N|}\)
adj N = \(\begin{vmatrix} 4 & -3 \\ -1 & 2 \end{vmatrix}\)
|N| = (2 x4) - (1 x 3)
= 8 - 3
=5
N-1 = \(\frac {1}{5}\) \(\begin{vmatrix} 4 & -3 \\ -1 & 2 \end{vmatrix}\)
Evaluate \(\begin{vmatrix} 4 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & 1 & 3 \end{vmatrix}\)
25
45
15
55
Correct answer is A
\(\begin{vmatrix} 4 & 2 & -1 \\ 2 & 3 & -1 \\ -1 & 1 & 3 \end{vmatrix}\)
4 \(\begin{vmatrix} 3 & -1 \\ 1 & 3 \end{vmatrix}\) -2 \(\begin{vmatrix} 2 & -1 \\ -1 & 3\end{vmatrix}\) -1 \(\begin{vmatrix} 2 & 3 \\ -1 & 1 \end{vmatrix}\)
4[(3 x 3) - (-1 x 1)] -2 [(2x 3) - (-1 x -1)] -1 [(2 x 1) - (-1 x 3)]
= 4[9 + 1] -2 [6 - 1] -1 [2 + 3]
= 4(10) - 2(5) - 1(5)
= 40 - 10 - 5
= 25
-6
6
-12
12
Correct answer is A
\(\begin{vmatrix} 2 & 3 \\ 5 & 3x \end{vmatrix}\) = \(\begin{vmatrix} 4 & 1 \\ 3 & 2x \end{vmatrix}\)
(2 x 3x) - (5 x 3) = (4 x 2x) - (3 x 1)
6x - 15 = 8x - 3
6x - 8x = 15 - 3
-2x = 12
x = \(\frac{12}{-2}\)
= -6
- \(\frac{1}{2}\)
\(\frac{1}{3}\)
-1
2
Correct answer is B
N + Y = XY + X + Y
3 + -\(\frac{2}{3}\) = 3(- \(\frac{2}{3}\)) + 3 + (- \(\frac{2}{3}\))
= -2 + 3 -\(\frac{2}{3}\)
= \(\frac{1 - 2}{1 - 3}\)
= \(\frac{1}{3}\)