JAMB Mathematics Past Questions & Answers - Page 316

1,576.

If x varies directly as square root of y and x = 81 when y = 9, Find x when y = 1\(\frac{7}{9}\)

A.

20\(\frac{1}{4}\)

B.

27

C.

2\(\frac{1}{4}\)

D.

36

Correct answer is D

x \(\alpha\sqrt y\)

x = k\(\sqrt y\)

81 = k\(\sqrt9\)

k = \(\frac{81}{3}\)

= 27

therefore, x = 27\(\sqrt y\)

y = 1\(\frac{7}{9}\) = \(\frac{16}{9}\)

x = 27 x \(\sqrt{\frac{16}{9}}\)

= 27 x \(\frac{4}{3}\)

dividing 27 by 3

= 9 x 4

= 36

1,577.

Solve for x and y respectively in the simultaneous equations -2x - 5y = 3. x + 3y = 0

A.

-3, -9

B.

9, -3

C.

-9,3

D.

3, -9

Correct answer is C

-2x -5y = 3 x + 3y = 0 x = -3y -2 (-3y) - 5y = -3 6y - 5y = 3 y = 3 but, x = -3y x = -3(3) x = -9 therefore, x = -9, y = 3

1,578.

Factorize completely 9y2 - 16X2

A.

(3y - 2x)(3y + 4x)

B.

(3y + 4x)(3y + 4x)

C.

(3y + 2x)(3y - 4x)

D.

(3y - 4x)(3y + 4x)

Correct answer is D

9y2 - 16x2

= 32y2 - 42x2

= (3y - 4x)(3y +4x)

1,579.

Find the remainder when X3 - 2X2 + 3X - 3 is divided by X2 + 1

A.

2X - 1

B.

X + 3

C.

2X + 1

D.

X - 3

Correct answer is A

X2 + 1 \(\frac{X - 2}{\sqrt{X^3 - 2X^2 + 3n - 3}}\)

= \(\frac {- 6X^3 + n}{-2X^2 + 2X - 3}\)

= \(\frac{(-2X^2 - 2)}{2X - 1}\)

Remainder is 2X - 1

1,580.

Make R the subject of the formula if T = \(\frac {KR^2 + M}{3}\)

A.

\(\sqrt\frac{3T - K}{M}\)

B.

\(\sqrt\frac{3T - M}{K}\)

C.

\(\sqrt\frac{3T + K}{M}\)

D.

\(\sqrt\frac{3T - K}{M}\)

Correct answer is B

T = \(\frac{KR^2 + M}{3}\)

3T = KR2 + M

KR2 = 3T - M

R2 = \(\frac{3T - M}{K}\)

R = \(\sqrt\frac{3T - M}{K}\)