Find the median of 2,3,7,3,4,5,8,9,9,4,5,3,4,2,4 and 5
9
8
7
4
Correct answer is D
Arrange all the values in ascending order, 2,2,3,3,3,4,4,4,4,5,5,5,7,8,9,9
126
180
216
224
Correct answer is D
\(\frac{x}{7} = \frac{96}{1}\) ==> \(\frac{672 + x}{8} = 112\)
Therefore x = 224
Evaluate \(\int^{\frac{\pi}{4}}_0sec^2 \theta d \theta\)
1
2
3
4
Correct answer is A
\(\int^{\frac{\pi}{4}}_0sec^2 \theta d \theta\)
= \([\tan \theta]_{0} ^{\frac{\pi}{4}}\)
= \(\tan \frac{\pi}{4} - \tan 0\)
= \(1 - 0\)
= 1.
Evaluate \(\int^2_1(x^2 - 4x)dx\)
\(\frac{11}{3}\)
\(\frac{3}{11}\)
\(-\frac{3}{11}\)
\(-\frac{11}{3}\)
Correct answer is D
\(\int^2_1(x^2 - 4x)dx\)
\((\frac{x^3}{3} - \frac{4x^2}{2})\)
substituting integrate values
\([\frac{8}{3} - \frac{4 \times 4}{2}] - [\frac{1}{2} - 2]\)
= \(-\frac{11}{3}\)
If y = x2 - \(\frac{1}{x}\), find \(\frac{\delta y}{\delta x}\)
2x - \(\frac{1}{x^2}\)
2x + x2
2x - x2
2x + \(\frac{1}{x^2}\)
Correct answer is D
y = x2 - \(\frac{1}{x}\)
y = x2 - x-1
\(\frac{\delta y}{\delta x}\) = 2x + x-2
\(\frac{\delta y}{\delta x}\) = 2x + \(\frac{1}{x^2}\)