A binary operation * is defined by x * y = xy. If x * 2 = 12 - x, find the possible values of x
3,4
3,-4
-3,4
-3,-4
Correct answer is B
x * y = xy
x * 2 = 12 - x
Thus by comparison,
x = x, y = 2
But x * y = x * 2
xy = 12 - x
x2 = 12 - x
x2 + x - 12 = 0
x2 + 4x - 3x - 12 = 0
x(x + 4) - 3(x + 4) = 0
(x - 3)(x + 4) = 0
x - 3 = 0 or x + 4 = 0
So x = 3 or x = -4
What is the common ratio of the G.P. \((\sqrt{10} + \sqrt{5}) + (\sqrt{10} + 2\sqrt{5}) + ... \)?
\(\sqrt{2}\)
\(\sqrt{5}\)
3
5
Correct answer is A
Common ratio r of the G.P is
\(r = \frac{T_n + 1}{T_n} = \frac{T_2}{T_1}\)
\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}}\)
\(r = \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}} \times \frac{\sqrt{10} - \sqrt{5}}{\sqrt{10} - \sqrt{5}} \)
\( = \frac{(\sqrt{10})(\sqrt{10}) + (\sqrt{10})(-\sqrt{5}) + (2\sqrt{5})(\sqrt{10}) + (2\sqrt{5})(-\sqrt{5})}{(\sqrt{10})^2 - (\sqrt{5})^2}\)
\(\frac{10 - \sqrt{50} + 2\sqrt{50} - 10}{10 - 5}\)
\(\frac{\sqrt{50}}{5}\)
\(\frac{\sqrt{25 \times 2}}{5}\)
\(\frac{5\sqrt{2}}{5}\)
\(\sqrt{2}\)
The 4th term of an A.P. is 13 while the 10th term is 31. Find the 24th term.
89
75
73
69
Correct answer is C
a + 3d = 13 .......... (1)
a + 9d = 31 .......... (2)
(2) - (1): 6d = 18
d = 18/6 = 3
From (1), a + 3(3) = 13
a + 9 = 13
a = 13 - 9 = 4
Hence,
T24 = a + 23d
T24 = 4 + 23(3)
T24 = 4 + 69
T24 = 73
Evaluate the inequality \(\frac{x}{2} + \frac{3}{4} \leq \frac{5x}{6} - \frac{7}{12}\)
\(x \geq 4\)
\(x \leq 3\)
\(x \geq -3\)
\(x \leq -4\)
Correct answer is A
\(\frac{x}{2} + \frac{3}{4} \leq \frac{5x}{6} - \frac{7}{12}\)
\(12\frac{x}{2} + 12\frac{3}{4} \leq 12\frac{5x}{6} - 12\frac{7}{12}\)
6x + 9 \(\leq\) 10x - 7
6x - 10x \(\leq\) - 7 - 9
-4x \(\leq\) -16
-4x/-4 \(\geq\) -16/-4
x \(\geq\) 4
What is the solution of \(\frac{x - 5}{x + 3} < -1\)?
-3 < x < 1
x < -3 or x > 1
-3 < x < 5
x < -3 or x > 5
Correct answer is A
Consider the range -3 < x < -1
= { -2, -1, 0}, for instance
When x = -2,
\(\frac{-2 - 5}{-2 + 3} < -1\)
\(\frac{-7}{1} < -1\)
When x = -1,
\(\frac{-1 - 5}{-1 + 3} < -1\)
\(\frac{-6}{2} < -1\)
= -3 < -1
When x = 0,
\(\frac{0 - 5}{0 + 3} < -1\)
\(\frac{- 5}{3} < -1\)
Hence -3 < x < 1