JAMB Mathematics Past Questions & Answers - Page 354

1,766.

Simplify \(7\frac{1}{12}-4\frac{3}{4}+2\frac{1}{2}\)

A.

4

B.

41/6

C.

45/6

D.

51/6

Correct answer is C

\(7\frac{1}{12}-4\frac{3}{4}+2\frac{1}{2}=5\left(\frac{1-9+6}{12}\right)\\
5\left(\frac{-2}{12}\right)\\
=4\left(\frac{12-2}{12}\right)\)
(carry one from 5 and call it 12)
\(4\frac{10}{12}\\
=4\frac{5}{6}\)

1,767.

If 55\(_x\) + 52\(_x\) = 77\(_{10}\) find X

A.

5

B.

6

C.

7

D.

10

Correct answer is C

5 \(\times\) x\(^1\)  + 5 \(\times\) x\(^0\) + 5 \(\times\) x\(^1\) + 2 \(\times\) x\(^0\) = 77

(change all  to base 10)
5x + 5 + 5x + 2 = 77
10x + 7 = 77
10x = 77-7
10x = 70
x = 70/10
x = 7

1,768.

The result of rolling a fair die 150 times is as summarized in the table above. What is the probability of obtaining a 5?

A.

3/10

B.

1/5

C.

1/6

D.

1/10

Correct answer is B

Total possible outcome
12+18+x+30+2x+45 = 105+3x
∴105+3x = 150
3x = 150-105
3x = 45
x = 15
P(obtaining 5) = \(\frac{2x}{(105+3x)}But x= 15\\
=\frac{2(15)}{(105+3(15))}\\
=\frac{30}{(105+45)}\\
=\frac{30}{150}\\
=\frac{1}{5}\)

1,769.

The probability of picking a letter T from the word OBSTRUCTION is?

A.

1/11

B.

2/11

C.

3/11

D.

4/11

Correct answer is B

OBSTRUCTION
Total possible outcome = 11
Number of chance of getting T = 2
P(picking T) = 2/11

1,770.

Find the number of ways of selecting 6 out of 10 subjects for an examination

A.

128

B.

216

C.

215

D.

210

Correct answer is D

\(^{10}C_6 = \frac{10!}{(10-6)!6!}\\
=\frac{10!}{4!6!}\\
=\frac{10\times 9\times 8 \times 7 \times 6!}{4\times 3\times 2\times 1 \times 6!}\\
=210\)