JAMB Mathematics Past Questions & Answers - Page 368

1,836.

The solution of the quadratic inequality (x3 + x - 12) ≥ 0 is

A.

x ≥ -3 or x ≤ 4

B.

x ≥ 3 or x ≥ -4

C.

x ≤ 3 or x v -4

D.

x ≥ 3 or x ≤ -4

Correct answer is B

(x3 + x - 12) ≥ 0
(x + 4)(x - 3) ≥ 0
Either x + 4 ≥ 0 implies x ≥ -4
Or x - 3 ≥ 0 implies x ≥ 3
∴ x ≥ 3 or x ≥ -4

1,837.

Make L the subjects of the formula if \(\sqrt{\frac{42w}{5l}}\)

A.

\(\sqrt{\frac{42w}{5d}}\)

B.

\(\frac{42W}{5d^2}\)

C.

\(\frac{42}{5dW}\)

D.

\(\frac{1}{d}\sqrt{\frac{42w}{5}}\)

Correct answer is B

\(\sqrt{\frac{42w}{5l}}\)
square both side of the equation
\(d^2 = \left(\sqrt{\frac{42W}{5l}}\right)^2\\
d^2 = \frac{42W}{5l}\\
5ld^2=42W\\
l = \frac{42W}{5d^2}\)

1,838.

A binary operation ⊕ on real numbers is defined by x⊕y = xy + x + y for any two real numbers x and y. The value of (-3/4)⊕6 is

A.

3/4

B.

-9/2

C.

45/4

D.

-3/4

Correct answer is A

x⊕y = xy + x + y
= -3/4 (6) + (-3/4) + 6
= -9/2 - 3/4 + 6
= (-18-3+3+24) / 4
= 3/4

1,839.

Determine the value of \(\int_0 ^{\frac{\pi}{2}
}(-2cos x)dx\)

A.

-2

B.

-1/2

C.

-3

D.

-3/2

Correct answer is A

\(\int_0 ^{\frac{\pi}{2}}(-2cos x)dx = [-2sin x + c]_0 ^{\frac{\pi}{2}}\\
=(-2sin\frac{\pi}{2}+c+2sin0-c)\\
=-2sin90+c+2sin0-c\\
=-2(1)+2(0)\\
=-2\)

1,840.

Find the value of x for which the function f(x) = 2x3 - x2 - 4x + 4 has a maximum value

A.

2/3

B.

1

C.

- 2/3

D.

-1

Correct answer is B

f(x) = 2x3 - x2 - 4x – 4
f’(x) = 6x2 - 2x – 4
As f’(x) = 0
Implies 6x2 - 2x – 4 = 0
3x – x – 2 = 0 (By dividing by 2)
(3x – 2)(x + 1) = 0
3x – 2 = 0 implies x = -2/3
Or x + 1 = 0 implies x = -1
f’(x) = 6x2 - 2x – 4
f’’(x) = 12x – 2
At max point f’’(x) < 0
∴f’’(x) = 12x – 2 at x = -1
= 12(-1) – 2
= -12 – 2 = -14
∴Max at x = 1