JAMB Mathematics Past Questions & Answers - Page 376

1,876.

If dy/dx = x + cos x, find y

A.

x2 - sin x + c

B.

x2 + sin x + c

C.

x2/2 - sin x + c

D.

x2/2 + sin x + c

Correct answer is D

dy/dx = x + cos x
y = ∫(x + cos x)dx
y = 1/2x2 + sin x + C

1,877.

Find the value of x for which the function 3x\(^3\) - 9x\(^2\) is minimum

A.

zero

B.

2

C.

3

D.

5

Correct answer is B

y = 3x\(^3\) - 9x\(^2\)
dy/dx = 9x\(^2\) - 18x
As dy/dx = 0
9x\(^2\) - 18x = 0
9x(x-2) = 0
9x = 0 which implies x = 0
x-2 = 0 implies x = 2
d2y/dx2 = 18x - 18
when x = 0
d2y/dx2 < 0 ∴ x is is minimum
when x = 2d\(^2\)y/dx\(^2\) = 18
∴ the value > 0 x is minimum

1,878.

Differentiate (x2 - 1/x)2 with respect to x

A.

4x2 - 4x - 2/x

B.

4x2 - 2 + 2/x3

C.

4x2 - 2 - 2/x3

D.

4x2 - 3x + 2/x

Correct answer is C

y = (x2 - 1/x)2
y = (x2 - 1/x)(x2 - 1/x)
y = x4 - x - x + 1/x2
y = x4 - 2x + 1/x2
y= x4 - 2x + x-2
dy/dx = 4x2 - 2 - 2x-3
= 4x2 - 2 - 2/x3

1,879.

The gradient of a curve is 2x + 7 and the curve passes through point (2, 0). find the equation of the curve.

A.

y = x2 + 7x + 9

B.

y = x2 + 7x - 18

C.

y = x2 + 7x + 18

D.

y = x2 + 14x + 11

Correct answer is B

dy/dx = 2x + 7
y = ∫2x + 7
y = x2 + 7x + C at (2,0)
0 = 22 + 7(2) + C
0 = 4 + 14 + C
0 = 18 + C
C = -18
∴ The equation is y = x2 + 7x - 18

1,880.

For what of n is n+1C3 = 4(nC3)?

A.

6

B.

5

C.

4

D.

3

Correct answer is D

\(^{n+1}C_3 = 4(^nC_3)\\\frac{(n+1)!}{(n+1-3)!3!} = 4\left(\frac{n!}{(n-3)!3!}\right)\\\frac{(n+1)n!}{(n-2)(n-3)!}=4\left(\frac{n!}{n-3!}\right)\\=\frac{n+1}{n-2}=\frac{4}{1}\\n+1 = 4(n-2)\\n+1 = 4n-8\\-3n = -9\\\frac{-9}{-3}\\n=3\)