Find the curved surface area of a cone with circular base diameter 10 cm and height 12 cm
25 πcm2
65 πcm2
120 πcm2
156 πcm2
Correct answer is B
L2 = 122 + 52
= 144 + 25
= 169
L = √169
= 13
Curved surface Area = πrL
= 5/1 * 13/1 * π
= 65πcm2
45o
63o
75o
90o
Correct answer is B
Area of a sector = \(\frac{\theta}{360}\times \pi r^2\\55=\frac{\theta}{360}\times \frac{22}{7}\times \frac{10\times 10}{1}\\\theta=\frac{360 \times 55 \times 7}{22 \times 10 \times 10}\\\theta = 63^{\circ}\)
30o
24o
18o
12o
Correct answer is A
Sum of interior ∠s = 1800o
∴(n - 2) 180o = 1800o
180n -360o = 1800o
180n = 1800o + 360o
180n = 2160o
n = 2160o/180o
n = 12 sides
Each exterior ∠ = 360o/n
= 360o/12
= 30o
2
1
-1
-2
Correct answer is C
a * b = ab + 2(a + b + 1)
let e be the identity element
∴ a * e = e * a = a
∴ a * e = a
ae + 2(a + e + 1) = a
ae + 2a + 2e + 2 = a
ae + 2e = a - 2a = 2
(a + 2)e = -a - 2
e = -a-2 / (a+2)
e = -(a+2) / (a+2)
e = -1
Find the sum of the first 20 terms of the series 8, 12, 16, ....., 96
1400
1040
960
920
Correct answer is D
8, 12, 16, .....96
a = 8, d = 4, l = 96, n = 20
\(S_{20} = \frac{n}{2}(2a + (n-1)d\)
\(S_{20} = \frac{20}{2}((2\times 8) + (20-1)\times 4)\)
\(S_{20} = 10(16 + (19\times 4)) = 10 \times 92\)
=920