JAMB Mathematics Past Questions & Answers - Page 381

1,901.

Find the curved surface area of a cone with circular base diameter 10 cm and height 12 cm

A.

25 πcm2

B.

65 πcm2

C.

120 πcm2

D.

156 πcm2

Correct answer is B

L2 = 122 + 52
= 144 + 25
= 169
L = √169
= 13
Curved surface Area = πrL
= 5/1 * 13/1 * π
= 65πcm2

1,902.

A sector of a circle has an area of 55 cm2. If the radius of the circle is 10 cm, calculate the angle of the sector
[π = 22/7]

A.

45o

B.

63o

C.

75o

D.

90o

Correct answer is B

Area of a sector = \(\frac{\theta}{360}\times \pi r^2\\55=\frac{\theta}{360}\times \frac{22}{7}\times \frac{10\times 10}{1}\\\theta=\frac{360 \times 55 \times 7}{22 \times 10 \times 10}\\\theta = 63^{\circ}\)

1,903.

The sum of the interior angle of a regular polygon is 1800o. Calculate the size of one exterior angle of the polygon

A.

30o

B.

24o

C.

18o

D.

12o

Correct answer is A

Sum of interior ∠s = 1800o
∴(n - 2) 180o = 1800o
180n -360o = 1800o
180n = 1800o + 360o
180n = 2160o
n = 2160o/180o
n = 12 sides
Each exterior ∠ = 360o/n
= 360o/12
= 30o

1,904.

An operation * is defined on the set of real numbers by a * b = ab + 2(a + b + 1). find the identity element

A.

2

B.

1

C.

-1

D.

-2

Correct answer is C

a * b = ab + 2(a + b + 1)
let e be the identity element
∴ a * e = e * a = a
∴ a * e = a
ae + 2(a + e + 1) = a
ae + 2a + 2e + 2 = a
ae + 2e = a - 2a = 2
(a + 2)e = -a - 2
e = -a-2 / (a+2)
e = -(a+2) / (a+2)
e = -1

1,905.

Find the sum of the first 20 terms of the series 8, 12, 16, ....., 96

A.

1400

B.

1040

C.

960

D.

920

Correct answer is D

8, 12, 16, .....96
a = 8, d = 4, l = 96, n = 20
\(S_{20} = \frac{n}{2}(2a + (n-1)d\)

\(S_{20} = \frac{20}{2}((2\times 8) + (20-1)\times 4)\)

\(S_{20} = 10(16 + (19\times 4)) = 10 \times 92\)

=920