If m = 3, p = -3, q = 7 and r = 5/2, evaluate m(p+q+r)
19.50
19.15
18.95
18.05
Correct answer is A
m = 3, p = -3, q = 7 and r = 5/2
m(p+q+r) = 3(-3 + 7 + 5/2)
= 3(4 + 5/2)
= 3(4 + 21/2)
= 3 * 61/2
= 3 * 13/2
= 39/2
= 19.50
Simplify \(\frac{(√12-√3)}{(√12+√3)}\)
zero
1/3
3/5
1
Correct answer is B
\(\frac{(\sqrt{12}-\sqrt{3})}{(\sqrt{12}+\sqrt{3})}=\frac{\sqrt{4\times 3}-\sqrt{3}}{\sqrt{4\times 3}+\sqrt{3}}\\=\frac{2\sqrt{3}-\sqrt{3}}{2\sqrt{3}+\sqrt{3}}\\=\frac{\sqrt{3}}{3\sqrt{3}}\\=\frac{1}{3}\)
If Log102 = 0.3010 and Log103 = 0.4771, evaluate Log104.5
0.9542
0.6532
0.4771
0.3010
Correct answer is B
Log102 = 0.3010 and Log103 = 0.4771
Log104.5 = Log1041/2
= Log109/2
= Log109 - Log102
= log1032 - Log102
= 2Log103 - Log102
= 2(0.4771) - 0.3010
= 0.9542 - 0.3010
= 0.6532
Evaluate \(\frac{(81^{\frac{3}{4}}-27^{\frac{1}{3}})}{3 \times 2^3}\)
3
1
1/3
1/8
Correct answer is B
\(\frac{81^{\frac{3}{4}}-27^{\frac{1}{3}}}{3 \times 2^3} = \frac{(3^{3-\frac{3}{4}}-3^{3-\frac{3}{4}})}{3\times 2^3}\\=\frac{3^3 - 3}{3 \times 8}\\=\frac{27-3}{24}\\=\frac{24}{24}\\=1\)
60
54
48
42
Correct answer is B
Let x = the number of oranges
The 1st received 1/3 of x = 1/3x
∴Remainder = x - 1/3x = 2x/3
The 2nd received 2/3 of 2x/3 = 2/3 * 2x/3 = 4x/3
The 3rd received 12 oranges
∴1/3x + 4x/9 + 12 = x
(3x + 4x + 108)/9 = x
3x + 4x + 108 = 9x
7x + 108 = 9x
9x - 7x = 108
2x = 108
x = 54 oranges