Simplify \(\frac{1}{\sqrt{3}+2}\) in the form \(a+b\sqrt{3}\)
2 -√3
-2 - √3
2 + √3
-2 + √3
Correct answer is A
\(\frac{1}{\sqrt{3}+2}=\frac{1}{\sqrt{3}+2}\times \frac{\sqrt{3}-2}{\sqrt{3}-2}\\=\frac{\sqrt{3}-2}{(\sqrt{3})^{2} -2^{2}}\\=\frac{\sqrt{3}-2}{3-4}=\frac{\sqrt{3}-2}{1}\\=-\sqrt{3}+2\\=2-\sqrt{3}\)
\(\frac{7}{12}\)
\(\frac{19}{35}\)
\(\frac{2}{25}\)
\(\frac{19}{60}\)
Correct answer is B
\(\frac{\frac{1}{10}\times\frac{2}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}}\\Numerator \hspace{1mm}\frac{1}{10}\times\frac{2}{3}+\frac{1}{4} = \frac{1}{5}+\frac{1}{4}\\=\frac{4+15}{60}=\frac{19}{60}\\denominator\hspace{1mm}= \frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}=\frac{1}{2}\times\frac{5}{3}-\frac{1}{4}\\=\frac{5}{6}-\frac{1}{4}\\=\frac{10-3}{12}\\=\frac{7}{12}\\\frac{Numerator}{denominator}=\frac{\frac{19}{60}}{\frac{7}{12}}\\=\frac{19}{60}\times\frac{12}{7}=\frac{19}{35}\)
Given that 3√42x = 16, find the value of x
4
6
3
2
Correct answer is C
3√42x = 16
this implies that (3√42x)3 = (16)3
42x = 42*3
42x = 46
∴ 2x = 6
x = 3
627
1167
6117
1427
Correct answer is B
4516 - P7 = 3056
P7 = 4516 - 3056
P7 = 1426
convert 1426 = 1 * 62 + 4 * 61 + 2 * 60
= 36 + 24 + 2
= 62
Convert 6210 to base 7
62/7 = 8 R 6
8/7 = 1 R 1
1/7 = 0 R 1
∴P7 = 1167
If 6logx2 - 3logx3 = 3log50.2, find x.
8/3
4/3
3/4
3/8
Correct answer is C
6logx2 - 3logx3 = 3log50.2
= logx26 - 3logx33 = log5(0.2)3
= logx(64/27) = log5(1/5)3
logx(64/27) = log5(1/125)
let logx(64/27) = y
∴xy = 64/27
and log5(1/125) = y
∴ 5y = 1/125
5y = 125-1
5y = 5-3
∴ y = -3
substitute y = -3 in xy = 64/27
implies x-3 = 64/27
1/x3 = 64/27
64x3 = 27
x3 = 27/64
x3 = 3√27/64
x = 3/4