JAMB Mathematics Past Questions & Answers - Page 385

1,921.

Simplify \(\frac{1}{\sqrt{3}+2}\) in the form \(a+b\sqrt{3}\)

A.

2 -√3

B.

-2 - √3

C.

2 + √3

D.

-2 + √3

Correct answer is A

\(\frac{1}{\sqrt{3}+2}=\frac{1}{\sqrt{3}+2}\times \frac{\sqrt{3}-2}{\sqrt{3}-2}\\=\frac{\sqrt{3}-2}{(\sqrt{3})^{2} -2^{2}}\\=\frac{\sqrt{3}-2}{3-4}=\frac{\sqrt{3}-2}{1}\\=-\sqrt{3}+2\\=2-\sqrt{3}\)

1,922.

Evaluate \(\frac{\frac{1}{10}\times\frac{2}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}}\)

A.

\(\frac{7}{12}\)

B.

\(\frac{19}{35}\)

C.

\(\frac{2}{25}\)

D.

\(\frac{19}{60}\)

Correct answer is B

\(\frac{\frac{1}{10}\times\frac{2}{3}+\frac{1}{4}}{\frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}}\\Numerator \hspace{1mm}\frac{1}{10}\times\frac{2}{3}+\frac{1}{4} = \frac{1}{5}+\frac{1}{4}\\=\frac{4+15}{60}=\frac{19}{60}\\denominator\hspace{1mm}= \frac{\frac{1}{2}}{\frac{3}{5}}-\frac{1}{4}=\frac{1}{2}\times\frac{5}{3}-\frac{1}{4}\\=\frac{5}{6}-\frac{1}{4}\\=\frac{10-3}{12}\\=\frac{7}{12}\\\frac{Numerator}{denominator}=\frac{\frac{19}{60}}{\frac{7}{12}}\\=\frac{19}{60}\times\frac{12}{7}=\frac{19}{35}\)

1,923.

Given that 3√42x = 16, find the value of x

A.

4

B.

6

C.

3

D.

2

Correct answer is C

3√42x = 16
this implies that (3√42x)3 = (16)3
42x = 42*3
42x = 46
∴ 2x = 6
x = 3

1,924.

Find P, if 4516 - P7 = 3056

A.

627

B.

1167

C.

6117

D.

1427

Correct answer is B

4516 - P7 = 3056
P7 = 4516 - 3056
P7 = 1426
convert 1426 = 1 * 62 + 4 * 61 + 2 * 60
= 36 + 24 + 2
= 62
Convert 6210 to base 7
62/7 = 8 R 6
8/7 = 1 R 1
1/7 = 0 R 1
∴P7 = 1167

1,925.

If 6logx2 - 3logx3 = 3log50.2, find x.

A.

8/3

B.

4/3

C.

3/4

D.

3/8

Correct answer is C

6logx2 - 3logx3 = 3log50.2
= logx26 - 3logx33 = log5(0.2)3
= logx(64/27) = log5(1/5)3
logx(64/27) = log5(1/125)
let logx(64/27) = y
∴xy = 64/27
and log5(1/125) = y
∴ 5y = 1/125
5y = 125-1
5y = 5-3
∴ y = -3
substitute y = -3 in xy = 64/27
implies x-3 = 64/27
1/x3 = 64/27
64x3 = 27
x3 = 27/64
x3 = 3√27/64
x = 3/4