JAMB Mathematics Past Questions & Answers - Page 402

2,006.

If tan θ = 4/3, calculate sin\(^2\) θ - cos\(^2\) θ.

A.

16/25

B.

24/25

C.

7/25

D.

9/25

Correct answer is C

\(\tan \theta = \frac{opposite}{adjacent} = \frac{4}{3}\)

Hyp\(^2\) = 4\(^2\) + 3\(^2\)

Hyp = 5.

\(\sin \theta = \frac{4}{5}; \cos \theta = \frac{3}{5}\)

\(\sin^{2} \theta - \cos^{2} \theta = \frac{16}{25} - \frac{9}{25}\)

= \(\frac{7}{25}\)

2,007.

A chord of a circle subtends an angle of 120° degrees at the centre of a circle of diameter 4√3 cm. Calculate the area of the major sector.

A.

4π cm2

B.

32 π cm2

C.

16 π cm2

D.

8 π cm2

Correct answer is D

Diameter = 4\(\sqrt{3}\) cm<

radius = 2\(\sqrt{3}\) cm

Area of major sector = \(\frac{\theta}{360} \times \pi r^{2}\)

\(\theta = 360 - 120 = 240°\)

= \(\frac{240}{360} \times \pi \times 12\)

= \(8\pi cm^{2}\)

2,008.

If x varies directly as √n and x = 9 when n = 9, find x when n = (17/9)

A.

4

B.

27

C.

√3

D.

√17

Correct answer is D

\(x \propto \sqrt{n}\)

\(x = k \sqrt{n}\)

\(9 = k \sqrt{9} \implies 9 = 3k\)

\(k = 3\)

\(x = 3 \sqrt{n}\)

When n = 17/9,

\(x = 3 \times \sqrt{\frac{17}{9}} = \sqrt{17}\)

 

2,009.

The sum to infinity of the series: 1 + (1/3) + (1/9) + (1/27) + ... is

A.

11/3

B.

10/3

C.

5/2

D.

3/2

Correct answer is D

The series is geometric with common ratio \(\frac{1}{3}\).

\(S_{\infty} = \frac{a}{1 - r}\)

= \(\frac{1}{1 - \frac{1}{3}} \)

= \(\frac{1}{\frac{2}{3}}\)

= \(\frac{3}{2}\)

2,010.

The binary operation * is defined on the set of integers p and q by p*q = pq + p + q. Find 2 * (3 * 4).

A.

59

B.

19

C.

67

D.

38

Correct answer is A

\(p \ast q = pq + p + q\)

\(2 \ast (3 \ast 4) \)

\(3 \ast 4 = 12 + 3 + 4 = 19\)

\(2 \ast 19 = 38 + 2 + 19 = 59\)