JAMB Mathematics Past Questions & Answers - Page 403

2,011.

If -2 is the solution of the equation 2x + 1 - 3c = 2c + 3x - 7, find the value of c.

A.

4

B.

3

C.

2

D.

1

Correct answer is C

-2 is the solution implies x = -2.

2x + 1 - 3c = 2c + 3x - 7

2(-2) + 1 - 3c = 2c + 3(-2) - 7

-4 + 1 - 3c = 2c - 6 - 7

-3 + 13 = 2c + 3c ⟹⟹ c = 2.

2,012.

The inverse function f(x) = 3x + 4 is

A.

(x-4)/3

B.

(x-5)/5

C.

(x+3)/4

D.

(x+4)/3

Correct answer is A

Let y = f(x).

\(y = 3x + 4 \implies x = \frac{y - 4}{3}\)

Replace y with x.

\(y = \frac{x - 4}{3} \)

2,013.

Make r subject of the formula given that \(\frac{x}{r+a}=\frac{a}{r}\)

A.

\(\frac{a^{2}}{(x-a)}\)

B.

\(\frac{a^{2}}{(x+a)}\)

C.

\(\frac{a}{x-a}\)

D.

\(\frac{a}{x+a}\)

Correct answer is A

\(\frac{x}{r + a} = \frac{a}{r}\)

\(\implies rx = ar + a^{2}\)

\(rx - ra = a^{2} \implies r = \frac{a^2}{x - a}\)

2,014.

If the 9th term of an A.P is five times the 5th term, find the relationship between a and d.

A.

2a + 2 = 0

B.

3a + 5d = 0

C.

a + 3d = 0

D.

a + 2d = 0

Correct answer is C

\(T_{n} = a + (n - 1) d\) (nth term of an AP).

\(T_{9} = 5T_{5}\)

\(a + 8d = 5(a + 4d) \implies a + 8d = 5a + 20d\)

\(5a - a + 20d - 8d = 0 \implies 4a + 12d = 0\)

\(a + 3d = 0\)

2,015.

Find the maximum value of y in the equation y = 1 - 2x - 3x\(^2\)

A.

5/4

B.

5/3

C.

3/4

D.

4/3

Correct answer is D

\(y = 1 - 2x - 3x^2\)

At maximum point, \(\frac{\mathrm d y}{\mathrm d x} = 0\)

\(\frac{\mathrm d y}{\mathrm d x} = -2 - 6x\)

\(-2 - 6x = 0 \implies -2 = 6x\)

\(x = -\frac{1}{3}\)

At x = \(-\frac{1}{3}\), y = \(1 - 2(-\frac{1}{3}) - 3(-\frac{1}{3})^{2}\)

= \(1 + \frac{2}{3} - \frac{1}{3}\)

= \(\frac{4}{3}\)