JAMB Mathematics Past Questions & Answers - Page 420

2,096.

If \(P344_{6} - 23P2_{6} = 2PP2_{6}\), find the value of the digit P.

A.

2

B.

3

C.

4

D.

5

Correct answer is D

Convert everything to base 10 and collect like terms, such that:

\(210P - 42P = 434 + 406\)

\(168P = 840\)

\(P = 840/168 = 5\)

2,097.

Simplify \(\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}\)

A.

2n+1

B.

2n-1

C.

4

D.

1/4

Correct answer is C

Start by expanding \(\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}\):

\(\frac{3 \times 2^n \times 2^1 - 2^2 \times 2^n \times 2^{-1}}{2^n \times 2 - 2^n}\)

NUMERATOR : 2\(^n\) (  3\(^1\) X 2\(^1\)  -  2\(^2\) X 2\(^-1\) )

--> 2\(^n\) ( 3 X 2 — 4 X \(\frac{1}{2}\) )

--> 2\(^n\) ( 6 - 2 ) 

--> 2\(^n\) (4)

DENOMINATOR : 2\(^n\) ( 2\(^1\)  -  1 )

--> 2\(^n\) ( 2 - 1)

  --> 2\(^n\)

 

: [ 2\(^n\) ( 4) ] ÷ 2\(^n\)

= 4

2,098.

If 314\(_10\) - 256\(_7\) = 340\(_x\), find x.

A.

7

B.

8

C.

9

D.

10

Correct answer is A

31410 - 2567 = 340x,
Convert 2567 and 340x to base 10, such that:
314 - 139 = 3x2 + 4x
=> 3x2 + 4x - 175 = 0 (quadratic)
Factorising, (x - 7) (3x + 25) = 0,
either x = 7 or x = -25/3 ( but x cannot be negative)

Therefore, x = 7.

2,099.

A man wishes to keep his money in a savings deposit at 25% compound interest so that after three years he can buy a car for N150,000. How much does he need to deposit?

A.

N112,000.50

B.

N96,000.00

C.

N85,714.28

D.

N76,800.00

Correct answer is D

Amount A = P(1+r)n;
A = N150,000, r = 25%, n = 3.
150,000 = P(1+0.25)3 = P(1.25)3

P = 150,000/1.253 =N76,800.00

2,100.

Evaluate \(\frac{(2.813 \times 10^{-3} \times 1.063)}{(5.637 \times 10^{-2})}\) reducing each number to two significant figures and leaving your answer in two significant figures.

A.

0.056

B.

0.055

C.

0.054

D.

0.54

Correct answer is B

\(\frac{2.813 \times 10^{-3} \times 1.063}{5.637 \times 10^{-2}}\)

= \(\frac{0.002813 \times 1.063}{0.05637}\)

\(\approxeq \frac{0.0028 \times 1.1}{0.056}\)

= \(0.055\)