26.7m
14.2m
\(1.7+(25\frac{\sqrt{3}}{3}m\)
\(1.7+(25\frac{\sqrt{2}}{2}m\)
Correct answer is B
Hint: Make a sketch forming a right angled triangle. Let x = height of the tree above the man. Such that x/25 = sin 30.
x = 12.5m
The height of the tree = 12.5 + 1.7
= 14.2 m
1
2
3
4
Correct answer is C
\(x^{2} + y^{2} - 2\alpha x + 4y - \alpha = 0\)
r = 4 units; centre (\(\alpha\), -2).
\((x - x_{1})^{2} + (y - y_{1})^{2} = r^{2}\)
\((x - \alpha)^{2} + (y - (-2))^{2} = 4^{2}\)
\(x^{2} - 2\alpha x + \alpha^{2} + y^{2} + 4y + 4 = 16\)
\(\alpha(\alpha - 3) + 4(\alpha - 3) = 0\)
\((\alpha + 4)(\alpha - 3) = 0 \implies +\alpha = 3\)
\(x^{2} + y^{2} - 2\alpha x + 4y = 16 - \alpha^{2} - 4\)
\(\therefore 12 - \alpha^{2} = \alpha \implies \alpha^{2} + \alpha - 12 = 0\)
\(\alpha^{2} - 3\alpha + 4\alpha - 12 = 0\)
Divide 4x\(^3\) - 3x + 1 by 2x - 1
2x2-x+1
2x2-x-1
2x2+x+1
2x2+x-1
Correct answer is D
No explanation has been provided for this answer.
8/5
8/3
72/25
56/9
Correct answer is C
Let the common ratio be r so that the first term is 2r.
Sum, s = \(\frac{a}{1-r}\)
ie. 8 = \(\frac{2r}{1-r}\)
8(1-r) = 2r,
8 - 8r = 2r
8 = 2r + 8r
8 = 10r
r = \(\frac{4}{5}\).
where common ratio (r) = \(\frac{second term(n_2)}{first term(a)}\),
r = \(\frac{n_2}{2r}\)
r = \(\frac{4}{5}\) and a = 2r or \(\frac{8}{5}\)
\(\frac{4}{5}\) * \(\frac{8}{5}\) = n\(_2\)
\(\frac{32}{25}\) = n\(_2\)
The sum of the first two terms = a + n\(_2\)
= \(\frac{8}{5}\) + \(\frac{32}{25}\)
= \(\frac{40 + 32}{25}\)
= \(\frac{72}{25}\)
Express \(\frac{1}{x^{3}-1}\) in partial fractions
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x + 2)}{x^{2} + x + 1})\)
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{x - 2}{x^{2} + x + 1})\)
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x - 2)}{x^{2} + x + 1})\)
\(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x - 1)}{x^{2} - x - 1})\)
Correct answer is A
\(\frac{1}{x^{3} - 1}\)
\(x^{3} - 1 = (x - 1)(x^{2} + x + 1)\)
\(\frac{1}{x^{3} - 1} = \frac{A}{x - 1} + \frac{Bx + C}{x^{2} + x + 1}\)
\(\frac{1}{x^{3} - 1} = \frac{A(x^{2} + x + 1) + (Bx + C)(x - 1)}{x^{3} - 1}\)
Comparing the two sides of the equation,
\(A + B = 0 ... (1)\)
\(A - B + C = 0 ... (2)\)
\(A - C = 1 ... (3)\)
From (3), \(C = A - 1\), putting that in (2),
\(A - B = -C \implies A - B = 1 - A\)
\(2A - B = 1 ... (4)\)
(1) + (4): \(3A = 1 \implies A = \frac{1}{3}\)
\(A = -B \implies B = -\frac{1}{3}\)\(C = A - 1 \implies C = \frac{1}{3} - 1 = -\frac{2}{3}\)
= \(\frac{1}{3}(\frac{1}{x - 1} - \frac{(x + 2)}{x^{2} + x + 1})\)