JAMB Mathematics Past Questions & Answers - Page 45

221.

Find the probability that a number selected at random from 21 to 34 is a multiple of 3

A.

\(\frac{3}{11}\)

B.

\(\frac{2}{9}\)

C.

\(\frac{5}{14}\)

D.

\(\frac{5}{13}\)

Correct answer is C

S = {21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}

n(S) = 14

multiples of 3 = {21, 24, 27, 30, 33}

n(multiples of 3) = 5

Prob( picking a multiple of 3) = 5/14

222.

Integrate \(\int (4x^{-3} - 7x^2 + 5x - 6) \mathrm d x\).

A.

\(-2x^{-2} - \frac{7}{3}x^3 + \frac{5}{2} x^2 - 6x\)

B.

\(2x^2 + \frac{7}{3} x^3 - 5x + 6\)

C.

\(12x^2 + 14x - 5\)

D.

\(-12x^{-4} - 14x + 5\)

Correct answer is A

\(\int (4x^{-3} - 7x^2 + 5x - 6) \mathrm d x\)

= \(\frac{4x^{-3 + 1}}{-3 + 1} - \frac{7x^{2 + 1}}{2 + 1} + \frac{5x^{1 + 1}}{1 + 1} - 6x\)

= \(-2x^{-2} - \frac{7}{3} x^3 + \frac{5}{2} x^2 - 6x\)

223.

This table below gives the scores of a group of students in a Further Mathematics Test.

Score 1 2 3 4 5 6 7
Frequency 4 6 8 4 10 6 2

Calculate the mean deviation for the distribution

A.

4.32

B.

2.81

C.

1.51

D.

3.90

Correct answer is C

Score(x) 1 2 3 4 5 6 7 Total Frequency (f) 4 6 8 4 10 6 2 40 fx 4 12 24 16 50 36 14 156 x - \(\bar{x}\) -2.9 -1.9 -0.9 0.1 1.1 2.1 3.1   |x - \(\bar{x}\)| 2.9 1.9 0.9 0.1 1.1 2.1 3.1   f|x - \(\bar{x}\)| 11.6 11.4 7.2 0.4 11 12.6 6.2 60.4

Mean = \(\frac{\sum fx}{\sum f}\)

= \(\frac{156}{40}\)

= 3.9

M.D = \(\frac{\sum f|x - \bar{x}|}{\sum f}\)

= \(\frac{60.4}{40}\)

= 1.51

225.

If M varies directly as N and inversely as the root of P. Given that M = 3, N = 5 and P = 25. Find the value of P when M = 2 and N = 6.

A.

36

B.

63

C.

47

D.

81

Correct answer is D

\(M \propto N \) ; \(M \propto \frac{1}{\sqrt{P}}\).

\(\therefore M \propto \frac{N}{\sqrt{P}}\)

\(M = \frac{k N}{\sqrt{P}}\)

when M = 3, N = 5 and P = 25;

\(3 = \frac{5k}{\sqrt{25}}\)

\(k = 3\)

\(M = \frac{3N}{\sqrt{P}}\)

when M = 2 and N = 6,

\(2 = \frac{3(6)}{\sqrt{P}} \implies \sqrt{P} = \frac{18}{2}\)

\(\sqrt{P} = 9 \implies P = 9^2\)

P = 81