JAMB Mathematics Past Questions & Answers - Page 96

476.

The area of a circle of radius 4cm is equal to (Take π = 3.142 )

A.

10.3cm2

B.

15.7cm2

C.

50.3cm2

D.

17.4cm2

Correct answer is C

Area of a circle (A) = πr2

Radius = 4cm

π = 3.142

A = 3.142 × (4)2

= 3.142 × 16

= 50.272

A = 50.3cm2 (1dp)

477.

Simplify \( \frac{1}{(x + 1)} + \frac{1}{(x − 1)} \)

A.

2x/(x + 1)(x−3)

B.

2x/(x + 1)(x−1)

C.

2x/(x + 1)2

D.

2x(x+1)2

Correct answer is B

[1 ÷ (x+1)] + [1 ÷ (x − 1)]

= ((x − 1) + [(x + 1)) ÷ (x+1)(x − 1)]

Using the L.C.M.

= (x − 1 + x + 1) ÷ (x + 1)(x − 1)

= (x + 2 − 1 + 1) ÷ (x + 1)(x − 1)

= 2x ÷ (x + 1)(x − 1) =2x ÷ (x + 1)(x − 1)

478.

Find the area of the curved surface of a cone whose base radius is 3cm and whose height is 4cm (π = 3.14)

A.

17.1cm2

B.

27.2cm2

C.

47.1cm2

D.

37.3cm2

Correct answer is C

Find the slant height

\( l^2 = h^2 + r^2(h = 4cm,r = 3cm)\)

\( l^2 = 4^2 + 3^2 = 16 + 9 = 25 \)

\( l^2 = √ 25 \)

Squaring both sides

l = 5cm

The area of curved surface (s) =π(3)(5)

15π = 15 × 3.14

= 47.1cm2

479.

Integral ∫\( (5x^3 + 7x^2 − 2x + 5)\)dx

A.

\( \frac{5x^4}{4} + \frac{7x^3}{3} + 2x + C \)

B.

\( \frac{5x^4}{4} + \frac{7x^3}{3} - x^2 + 5x + C \)

C.

\( \frac{5x^3}{3} + \frac{7x^2}{x} - x + C \)

D.

\( \frac{2x^2}{3} + \frac{x}{5} - C \)

Correct answer is B

\(\int (5x^{3} + 7x^{2} - 2x + 5) \mathrm d x\)

= \(\frac{5x^{4}}{4} + \frac{7x^{3}}{3} - \frac{2x^{2}}{2} + 5x + c\)

= \(\frac{5x^{4}}{4} + \frac{7x^{3}}{3} - x^{2} + 5x + c\)

480.

Evaluate log5(\( y^2x^5 ÷ 125b½) \)

A.

2 log5y + 5log5 y2 − 3

B.

log5 y2 + 5log5 x + 3

C.

25logy 5 + 3

D.

2log5y + 5log5x − ½ log5b −3

Correct answer is D

\(\log_{5}(y^{2} x^{5} \div 125b^{\frac{1}{2}})\)

= \(\log_{5} y^{2} + \log_{5} x^{5} - [\log_{5} 125 + \log_{5} b^{\frac{1}{2}}\)

= \(2\log_{5} y + 5\log_{5} x - \log_{5} 5^{3} - \frac{1}{2} \log_{5} b\)

= \(2\log_{5} y + 5\log_{5} x - 3 - \frac{1}{2}\log_{5} b\)