JAMB Physics Past Questions & Answers - Page 6

Share on
51.

Which of the following thermometers measures temperature from the thermal radiation emitted by objects?

A.

Pyrometer thermometer

B.

Platinum resistance thermometer

C.

Thermocouple thermometer

D.

Constant pressure gas thermometer

Correct answer is A

A pyrometer is a type of remote-sensing thermometer used to measure the temperature of a surface. It does this by measuring the thermal radiation or infrared energy being emitted from the object. Therefore, a pyrometer thermometer measures temperature from the thermal radiation emitted by objects.

52.

What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from \(-10^oC\) to \(10^oC\) ?

[specific latent heat of fusion of ice = 3.34 x \(10^5\)  \(Jkg^-1\), Specific heat capacity of water = 4200 \(Jkg^-1\) \(k^-1\)  

Specific heat capacity of ice = 2100 \(Jkg^-1\) \(k^-1\)

A.

6680 J

B.

1680 J

C.

7520 J

D.

7940 J

Correct answer is D

Quantity of heat required to raise the temperature of the ice cube from \(-10^oC\) to \(0^oC\)
⇒H=mc►ø = 0.02 × 2100 × 0 -(-10)

⇒ H = 0.02 × 2100 × (0 + 10) = 0.02 × 2100 × 10

⇒ H = 420 J

quantity of heat required to melt ice at \(0^oC\)

⇒ H = mL = 0.02 × 3.34 × \(10^5\)

⇒H=6680 j

Quantity of heat required to raise the temperature of the melted ice cube (water) from \(0^oC\) to \(-10^oC\)

⇒H=mc►ø = 0.02 × 4200 × (10-0)

⇒H = 0.02 × 4200 × 10

⇒H = 840j

;420 + 6680 + 840 = 7940 j

 

53.

A parallel plate capacitor separated by an air gap is made of \(0.8m^2\) tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take \(ε_o\) = \(8.85×10^-12 Fm^-1\)

A.

3.54nC

B.

42.5nC

C.

35.4nC

D.

4.25nC

Correct answer is B

A= \(0.8m^2\)    d= 20mm =\(\frac{20}{1000}\) = 0.02m

v =120v;  \(ε_oA\)= \(8.85 × 10^-12 fm^-1\)

C = \(\frac{ε_oA}{d}\)

C =\(\frac{8.85 × 10^-12×0.8}{0.02}\)

C= \(3.54 × 10^-10 F\)

Q= CV

⇒  \(3.54 × 10^-10\) × 120 = \(4.25×10^-8c\)

     Q=\(42.5 × 10^-9c\)  = 42.5nC

      

54.

An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm

55.

An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm

56.

A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]

A.

250

B.

300

C.

450

D.

200

Correct answer is A

ε= 80%, L=200× 10 = 2000N, \(d_L\)=10m
 

\(d_E\)= 110-10 = 100m, E=?

ε = \(\frac{work done on the load}{work done by the effort}\)  × 100%

⇒  work done on load = 2000 ×10 =20,000 j


⇒ work done by effort = E × 100  = 100E

⇒ 80 =   \(\frac{20,000}{100E}\) × 100%

⇒ 80 =   \(\frac{20,000}{E}\) 

⇒ E = \(\frac{20,000}{80}\)

              ⇒  E = 250N

57.

A man swung an object of mass 2 kg in a circular path with a rope 1.2 m long. If the object was swung at 120 rev/min, find the tension in the rope.

A.

400

B.

288

C.

240

D.

379

Correct answer is D

m=2kg, r=1.2m, f=120rev/min ; T=?

f=   \(\frac{120rev}{1min}\) × \(\frac{1min}{60s}\) = 2rev\s

w=2πf= 2×π×2= 4πrad\s

T= \(\frac{mv^2}{r}\),  but v = wr 

⇒ T = \(\frac{(m)(wr)^2}{r}\)

⇒ T = \(mw^2r\)

= T = 2× (4π)^2 × 1.2

   T = 379N ( to 3 s.f)

58.

A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.

[Take g = 10 ms\(^{-2}\)]

A.

\(2.4×10^{10}(Nm^{-2})\)

B.

\(1.5×10^{10}(Nm^{-2})\)

C.

\(2.4×10^9(Nm^{-2})\)

D.

\(1.3×10^{10}(Nm^{-2})\)

Correct answer is A

r=0.2mm = \(2 × {10^{-4}}\) e= 0.05% of L,=0.005L, m=1.5kgg=\(10 ms^{-2}\) ,  y=?,    

(1000 mm = 1m)

Y = \(\frac{FL}{Ae}\)

w = mg = 1.5 × 10 = 15

A = \(\pi r^2\) = \(\frac{22}{7}×(2×10^{-4})^2\) = \(1.26×10^{-7}(m^2)\)

⇒ Y = \(\frac{15L}{1.26×10^{-7}×0.005L}\)

⇒ Y = \(\frac{15}{1.26×10^{-7}×0.005}\)

⇒ Y = \(\frac{15}{6.29×10^{-10}}\)

Y = \(2.4×10^{10}(Nm^{-2})\)

59.

How much net work is required to accelerate a 1200 kg car from 10\(ms^{-1}\) to 15\(ms^{-1}\)

A.

1.95×\(10^5 j\)

B.

1.35×\(10^4 j\)

C.

7.5×\(10^4 j\)

D.

6.0×\(10^4 j\)

Correct answer is C

m=1200kg,  \(V_1\)= \(10ms^{-1}\)   \(V_2\) = \(15ms^{-1}\),  w= ?

work=►K.E = \( K.E_2\) =  \(K.E_2\) - \(K.E_1\)

⇒work= \(\frac{1}{2}{mv^2_2}-\frac{1}{2}{mv^2_1}\)

⇒work= \(\frac{1}{2}m({v^2_2}-{v^2_1}\))

⇒work= \(\frac{1}{2}× 1200× (15^2-10^2)\)

⇒work = 600 ×  (225 -100)

⇒work= 600 × 125

⇒work= 7.5×\(10^4 j\)

60.

Which process is responsible for production of energy in stars?

A.

Nuclear reaction

B.

Nuclear fission

C.

Nuclear fusion

D.

Radioactive decay

Correct answer is C

Nuclear fusion is the process in which lighter nuclei are combined to form heavier ones. Matter lost in this process is converted into energy. The energy produced inside the stars is due to the process of nuclear fusion.