Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

341.

If \(\frac{^{8}P_{x}}{^{8}C_{x}} = 6\), find the value of x.

A.

1

B.

2

C.

3

D.

6

Correct answer is C

\(\frac{^{8}P_{x}}{^{8}C_{x}} = \frac{8!}{(8 - x)!} ÷ \frac{8!}{(8 - x)! x!} = 6\)

\(\frac{8!}{(8 - x)!} \times \frac{(8 - x)! x!}{8!} = x! = 6\)

\(x = 3\)

342.

Given that \(\log_{3}(x - y) = 1\) and \(\log_{3}(2x + y) = 2\), find the value of x

A.

1

B.

2

C.

3

D.

4

Correct answer is D

\(\log_{3}(x - y) = 1 \implies x - y = 3^{1} = 3 .... (1)\)

\(\log_{3}(2x + y) = 2 \implies 2x + y = 3^{2} = 9 ..... (2)\)

From (1), y = x - 3

From (2), y = 9 - 2x

\(\implies 9 - 2x = x - 3\)

\(9 + 3 = x + 2x = 3x\)

\(x = 4\)

343.

Simplify \((216)^{-\frac{2}{3}} \times (0.16)^{-\frac{3}{2}}\)

A.

\(\frac{125}{288}\)

B.

\(\frac{2}{125}\)

C.

\(\frac{4}{225}\)

D.

\(\frac{2}{225}\)

Correct answer is A

\((216)^{-\frac{2}{3}} = (\frac{1}{216})^{\frac{2}{3}} = (\sqrt[3]{\frac{1}{216}})^{2} = (\frac{1}{6})^{2} = \frac{1}{36}\)

\((0.16)^{-\frac{3}{2}} = (\frac{100}{16})^{\frac{3}{2}} = (\sqrt{100}{16})^{3} = \frac{1000}{64}\)

\(\frac{1}{36} \times \frac{1000}{64} = \frac{125}{288}\)

344.

The derivative of a function f with respect to x is given by \(f'(x) = 3x^{2} - \frac{4}{x^{5}}\). If \(f(1) = 4\), find f(x).

A.

\(f(x) = x^{3} - \frac{1}{x^{4}} + 2\)

B.

\(f(x) = x^{3} + \frac{1}{x^{4}} + 2\)

C.

\(f(x) = x^{3} - \frac{1}{x^{4}} - 2 \)

D.

\(f(x) = x^{3} + \frac{1}{x^{4}} - 2\)

Correct answer is B

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - \frac{4}{x^5} = 3x^{2} - 4x^{-5}\)

\(y = \int (3x^{2} - 4x^{-5}) \mathrm {d} x \)

\(y = x^{3} + \frac{1}{x^{4}} + c\)

f(1) = 4; \(4 = 1^{3} + \frac{1}{1^{4}} + c \implies 4 = 2 + c\)

\(c = 2\)

\(f(x) = x^{3} + \frac{1}{x^{4}} + 2\)

345.

The roots of a quadratic equation are -3 and 1. Find its equation.

A.

\(x^{2} - 3x + 1 = 0\)

B.

\(x^{2} - 2x + 1 = 0\)

C.

\(x^{2} + 2x - 3 = 0\)

D.

\(x^{2} + x - 3 = 0\)

Correct answer is C

Given the roots of an equation such that you can find the sum and product of the roots, the equation can be given as:

\(x^{2} - (\alpha + \beta)x + (\alpha \beta) = 0 \)

\(\alpha + \beta = -3 + 1 = -2\)

\(\alpha \beta = -3 \times 1 = -3\)

Equation: \(x^{2} - (-2)x + (-3) = 0 \implies x^{2} + 2x - 3 = 0\)