Further Mathematics questions and answers

Further Mathematics Questions and Answers

Test your knowledge of advanced level mathematics with this aptitude test. This test comprises Further Maths questions and answers from past JAMB and WAEC examinations.

466.

A.

\(\begin{pmatrix} -6 & 17 \\ 3 & 1 \end{pmatrix}\)

B.

\(\begin{pmatrix} -2 & 9 \\ 4 & 1 \end{pmatrix}\)

C.

\(\begin{pmatrix} 0 & -6 \\ 9 & -8 \end{pmatrix}\)

D.

\(\begin{pmatrix} 0 & 10 \\ 9 & -4 \end{pmatrix}\)

Correct answer is D

\(P = \begin{pmatrix} 2 & 1 \\ 5 & -3 \end{pmatrix} ; Q = \begin{pmatrix} 4 & -8 \\ 1 & -2 \end{pmatrix}\)

\(2P = \begin{pmatrix} 4 & 2 \\ 10 & -6 \end{pmatrix}\)

\(2P - Q = \begin{pmatrix} 4 & 2 \\ 10 & -6 \end{pmatrix} - \begin{pmatrix} 4 & -8 \\ 1 & -2 \end{pmatrix}\)

= \(\begin{pmatrix} 0 & 10 \\ 9 & -4 \end{pmatrix}\)

467.

If \(y = x^{3} - x^{2} - x + 6\), find the values of x at the turning point.

A.

\(\frac{1}{2}, 3\)

B.

\(\frac{1}{3}, -\frac{1}{2}\)

C.

\(1, -\frac{1}{3}\)

D.

\(1, \frac{1}{3}\)

Correct answer is C

At turning point, \(\frac{\mathrm d y}{\mathrm d x} = 0\).

Given \(x^{3} - x^{2} - x + 6 \)

\(\frac{\mathrm d y}{\mathrm d x} = 3x^{2} - 2x - 1 = 0 \)

\(3x^{2} - 3x + x - 1 = 0 \implies (3x + 1)(x - 1) = 0\)

\(x = \frac{-1}{3}, 1\)

468.

Evaluate \(\int_{-2}^{3} (3x^{2} - 2x - 12) \mathrm {d} x\)

A.

-30

B.

-18

C.

-6

D.

6

Correct answer is A

\(\int (3x^{2} - 2x - 12) \mathrm {d} x = \frac{3x^{2 + 1}}{2 + 1} - \frac{2x^{1 + 1}}{2} - 12x\)

= \(x^{3} - x^{2} - 12x\)

\((x^{3} - x^{2} - 12x)|_{-2}^{3} = ((3^{3}) - (3^{2}) - 12(3)) - ((-2^{3}) - (-2^{2}) - 12(-2))\)

= \((27 - 9 - 36) - (-8 - 4 + 24) = -18 - 12 = -30\)

469.

If the midpoint of the line joining (1 - k, -4) and (2, k + 1) is (-k, k), find the value of k.

A.

-4

B.

-3

C.

-2

D.

-1

Correct answer is D

Midpoint between \((x_{1}, y_{1})\) and \((x_{2}, y_{2})\) = \((\frac{x_{1} + x_{2}}{2}, \frac{y_{1} + y_{2}}{2})\).

\((-k, k) = (\frac{2 + (1 + k)}{2}, \frac{-4 + (k + 1)}{2})\)

\(-k = \frac{k + 3}{2} \implies -2k = k + 3\)

\(-3k = 3 \implies k = -1\)

470.

The equation of a circle is \(3x^{2} + 3y^{2} + 24x - 12y = 15\). Find its radius.

A.

2

B.

3

C.

4

D.

5

Correct answer is D

The equation of a circle is given as: \((x - a)^{2} + (y - b)^{2} = r^{2}\)

Expanding, we have: \(x^{2} + y^{2} - 2ax - 2by + a^{2} + b^{2} = r^{2}\)

\(\implies x^{2} + y^{2} - 2ax - 2by = r^{2} - a^{2} - b^{2}\)

Comparing with the given equation: \(3x^{2} + 3y^{2} + 24x - 12y = 15\)

Making the coefficients of \(x^{2}\) and \(y^{2}\) = 1, we have

\(x^{2} + y^{2} + 8x - 4y = 5\)

\(2a = -8 \implies a = -4\)

\(2b = 4 \implies b = 2\)

\(r^{2} - a^{2} - b^{2} = 5 \implies r^{2} = 5 + (-4)^{2} + (2)^{2} = 5 + 16 + 4 = 25\)

\(\therefore r = 5\)