-30
-18
-6
6
Correct answer is A
\(\int (3x^{2} - 2x - 12) \mathrm {d} x = \frac{3x^{2 + 1}}{2 + 1} - \frac{2x^{1 + 1}}{2} - 12x\)
= \(x^{3} - x^{2} - 12x\)
\((x^{3} - x^{2} - 12x)|_{-2}^{3} = ((3^{3}) - (3^{2}) - 12(3)) - ((-2^{3}) - (-2^{2}) - 12(-2))\)
= \((27 - 9 - 36) - (-8 - 4 + 24) = -18 - 12 = -30\)
Given that \(f : x \to \frac{2x - 1}{x + 2}, x \neq -2\), find \(f^{-1}\), the inverse of f ...
Find the equation of the normal to the curve y= 2x\(^2\) - 5x + 10 at P(1, 7)...
Given that \(R = (4, 180°)\) and \(S = (3, 300°)\), find the dot product...
Find the equation of the normal to the curve y = \(3x^2 + 2\) at point (1, 5)...
If 2i +pj and 4i -2j are perpendicular, find the value of p. ...
Given that r = (10 N , 200º) and n = (16 N , 020º), find (3r - 2n). ...
The gradient of point P on the curve \(y = 3x^{2} - x + 3\) is 5. Find the coordinates of P....