How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
L = -6, k = -9
L = -2, k = 1
k = -1, L = -2
L = 0, k = 1
k = 0,L = 6
Correct answer is A
f(x) = Lx3 + 2kx2 + 24
f(-2) = -8L + 8k = -24
4L - 4k = 12
f(1):L + 2k = -24
L - 4k = 3
3k = -27
k = -9
L = -6
If 0.0000152 x 0.042 = A x 108, where 1 \(\leq\) A < 10, find A and B
A = 9, B = 6.38
A = 6.38, B = -9
A = -6.38, B = -9
A = -9, B = -6.38
Correct answer is B
0.0000152 x 0.042 = A x 108
1 \(\leq\) A < 10, it means values of A includes 1 - 9
0.0000152 = 1.52 x 10-5
0.00042 = 4.2 x 10-4
1.52 x 4.2 = 6.384
10-5 x 10-4
= 10-5-4
= 10-9
= 6.38 x 10-9
A = 6.38, B = -9
\(\frac{1 - L}{1 + L}\)
\(\frac{L^2 \sqrt{3}}{1 + L}\)
\(\frac{1 + L^3}{L^2}\)
\(\frac{L(L - 1)}{1 - L + 1 \sqrt{1 - L^2}}\)
Correct answer is D
Given Cos z = L, z is an acute angle
\(\frac{\text{cot z - cosec z}}{\text{sec z + tan z}}\) = cos z
= \(\frac{\text{cos z}}{\text{sin z}}\)
cosec z = \(\frac{1}{\text{sin z}}\)
cot z - cosec z = \(\frac{\text{cos z}}{\text{sin z}}\) - \(\frac{1}{\text{sin z}}\)
cot z - cosec z = \(\frac{L - 1}{\text{sin z}}\)
sec z = \(\frac{1}{\text{cos z}}\)
tan z = \(\frac{\text{sin z}}{\text{cos z}}\)
sec z = \(\frac{1}{\text{cos z}}\) + \(\frac{\text{sin z}}{\text{cos z}}\)
= \(\frac{1}{l}\) + \(\frac{\text{sin z}}{L}\)
the original eqn. becomes
\(\frac{\text{cot z - cosec z}}{\text{sec z + tan z}}\) = \(\frac{L - \frac{1}{\text{sin z}}}{1 + sin \frac{z}{L}}\)
= \(\frac{L(L - 1)}{\text{sin z}(1 + \text{sin z})}\)
= \(\frac{L(L - 1)}{\text{sin z} + 1 - cos^2 z}\)
= sin z + 1
= 1 + \(\sqrt{1 - L^2}\)
= \(\frac{L(L - 1)}{1 - L + 1 \sqrt{1 - L^2}}\)
In a figure, PQR = 60o, PRS = 90o, RPS = 45o, QR = 8cm. Determine PS
2\(\sqrt{3}\)cm
4\(\sqrt{6}\)cm
2\(\sqrt{6}\)cm
8\(\sqrt{6}\)cm
8cm
Correct answer is B
From the diagram, sin 60o = \(\frac{PR}{8}\)
PR = 8 sin 60 = \(\frac{8\sqrt{3}}{2}\)
= 4\(\sqrt{3}\)
Cos 45o = \(\frac{PR}{PS}\) = \(\frac{4 \sqrt{3}}{PS}\)
PS Cos45o = 4\(\sqrt{3}\)
PS = 4\(\sqrt{3}\) x 2
= 4\(\sqrt{6}\)
Solve the following equations 4x - 3 = 3x + y = x - y = 3, 3x + y = 2y + 5x - 12
x = 5, y = 2
x = 2, y = 5
x = 5, y = -2
x = -2, y = -5
x = -5, y = -2
Correct answer is A
4x - 3 = 3x + y = x - y = 3.......(i)
3x + y = 2y + 5x - 12.........(ii)
eqn(ii) + eqn(i) 3x = 15
x = 5
substitute for x in equation (i)
5 - y = 3
y = 2