How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Solve: 6(x - 4) + 3(x + 7) = 3
3/2
2/3
1/2
1/3
Correct answer is B
6(x - 4) + 3(x + 7) = 3
6x - 24 + 3x + 21 = 3
9x - 3 = 3
9x = 6
x = \(\frac{2}{3}\)
Find the equation whose roots are -2/3 and -1/4
12x2 + 11x + 2 = 0
12x2 - 11x + 2 = 0
x2 - 11/12x + 2 = 0
12x2 - 11x - 2 = 0
x2 - 11/12x - 2 = 0
Correct answer is A
x = \(-\frac{2}{3}\) and \(-\frac{1}{4}\)
\(\implies (x + \frac{2}{3}) = 0; (x + \frac{1}{4}) = 0\)
\((x + \frac{2}{3})(x + \frac{1}{4}) = 0\)
\(x^{2} + \frac{1}{4}x + \frac{2}{3}x + \frac{1}{6} = 0\)
\(x^2 + \frac{11}{12}x + \frac{1}{6} = 0\)
\(12x^2 + 11x + 2 = 0\)
2n2 - 2n
2n-2(1-2n)
2n + 22n + 2
22n
Correct answer is A
1/4(2n - 2n+2) = 2-2(2n - 2n x 22) = 2n x -2(1 - 22)= 22n-2
(20 - 22) = 22n-2 - 2n
Simplify \((\frac{3}{x} + \frac{15}{2y}) \div \frac{6}{xy}\)
\(\frac{2y - 5x}{4}\)
\(\frac{9(2x - 5x)}{x^2y^2}\)
\(\frac{5x - 2y}{2}\)
\(\frac{c^2y^2}{18y - 45x}\)
\(\frac{4}{2y - 5x}\)
Correct answer is A
\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)
= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\)
= \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\)
= \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\)
= \(\frac{2y - 5x}{4}\)
Solve the equation: 3a + 10 = a\(^2\)
a = 5 or a = 2
a = -5 or a = 2
a = 10 or a = 0
a = 5 or a = 0
a = 5 or a = -2
Correct answer is E
3a + 10 = a\(^2\)
a\(^2\) - 3a - 10 = 0
a\(^2\) - 5a + 2a - 10 = 0
a(a - 5) + 2(a - 5) = 0
(a - 5)(a + 2) = 0
a = 5 or a = -2.