How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If \(P344_{6} - 23P2_{6} = 2PP2_{6}\), find the value of the digit P.
2
3
4
5
Correct answer is D
Convert everything to base 10 and collect like terms, such that:
\(210P - 42P = 434 + 406\)
\(168P = 840\)
\(P = 840/168 = 5\)
Simplify \(\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}\)
2n+1
2n-1
4
1/4
Correct answer is C
Start by expanding \(\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}\):
\(\frac{3 \times 2^n \times 2^1 - 2^2 \times 2^n \times 2^{-1}}{2^n \times 2 - 2^n}\)
NUMERATOR : 2\(^n\) ( 3\(^1\) X 2\(^1\) - 2\(^2\) X 2\(^-1\) )
--> 2\(^n\) ( 3 X 2 — 4 X \(\frac{1}{2}\) )
--> 2\(^n\) ( 6 - 2 )
--> 2\(^n\) (4)
DENOMINATOR : 2\(^n\) ( 2\(^1\) - 1 )
--> 2\(^n\) ( 2 - 1)
--> 2\(^n\)
: [ 2\(^n\) ( 4) ] ÷ 2\(^n\)
= 4
If 314\(_10\) - 256\(_7\) = 340\(_x\), find x.
7
8
9
10
Correct answer is A
31410 - 2567 = 340x,
Convert 2567 and 340x to base 10, such that:
314 - 139 = 3x2 + 4x
=> 3x2 + 4x - 175 = 0 (quadratic)
Factorising, (x - 7) (3x + 25) = 0,
either x = 7 or x = -25/3 ( but x cannot be negative)
Therefore, x = 7.
N112,000.50
N96,000.00
N85,714.28
N76,800.00
Correct answer is D
Amount A = P(1+r)n;
A = N150,000, r = 25%, n = 3.
150,000 = P(1+0.25)3 = P(1.25)3
P = 150,000/1.253 =N76,800.00
0.056
0.055
0.054
0.54
Correct answer is B
\(\frac{2.813 \times 10^{-3} \times 1.063}{5.637 \times 10^{-2}}\)
= \(\frac{0.002813 \times 1.063}{0.05637}\)
\(\approxeq \frac{0.0028 \times 1.1}{0.056}\)
= \(0.055\)