Physics questions and answers

Physics Questions and Answers

If you want to learn more about the nature and properties of matter and energy or you're simply preparing for a Physics exam, these Physics past questions and answers are ideal for you.

91.

What is the amount of heat required to raise the temperature of a 0.02 kg of ice cube from \(-10^oC\) to \(10^oC\) ?

[specific latent heat of fusion of ice = 3.34 x \(10^5\)  \(Jkg^-1\), Specific heat capacity of water = 4200 \(Jkg^-1\) \(k^-1\)  

Specific heat capacity of ice = 2100 \(Jkg^-1\) \(k^-1\)

A.

6680 J

B.

1680 J

C.

7520 J

D.

7940 J

Correct answer is D

Quantity of heat required to raise the temperature of the ice cube from \(-10^oC\) to \(0^oC\)
⇒H=mc►ø = 0.02 × 2100 × 0 -(-10)

⇒ H = 0.02 × 2100 × (0 + 10) = 0.02 × 2100 × 10

⇒ H = 420 J

quantity of heat required to melt ice at \(0^oC\)

⇒ H = mL = 0.02 × 3.34 × \(10^5\)

⇒H=6680 j

Quantity of heat required to raise the temperature of the melted ice cube (water) from \(0^oC\) to \(-10^oC\)

⇒H=mc►ø = 0.02 × 4200 × (10-0)

⇒H = 0.02 × 4200 × 10

⇒H = 840j

;420 + 6680 + 840 = 7940 j

 

92.

A parallel plate capacitor separated by an air gap is made of \(0.8m^2\) tin plates and 20 mm apart. It is connected to 120 V battery. What is the charge on each plate?
Take \(ε_o\) = \(8.85×10^-12 Fm^-1\)

A.

3.54nC

B.

42.5nC

C.

35.4nC

D.

4.25nC

Correct answer is B

A= \(0.8m^2\)    d= 20mm =\(\frac{20}{1000}\) = 0.02m

v =120v;  \(ε_oA\)= \(8.85 × 10^-12 fm^-1\)

C = \(\frac{ε_oA}{d}\)

C =\(\frac{8.85 × 10^-12×0.8}{0.02}\)

C= \(3.54 × 10^-10 F\)

Q= CV

⇒  \(3.54 × 10^-10\) × 120 = \(4.25×10^-8c\)

     Q=\(42.5 × 10^-9c\)  = 42.5nC

      

93.

An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm

94.

An air bubble of radius 4.5 cm initially at a depth of 12 m below the water surface rises to the surface. If the atmospheric pressure is equal to 10.34 m of water, the radius of the bubble just before it reaches the water surface is

A.

6.43 cm

B.

8.24 cm

C.

4.26 cm

D.

5.82 cm

Correct answer is D

\(r_1\) = 4.5cm , \( P_1\) =is the total pressure on the bubble at a depth of 12m from the surface.

\(P_1\) = 12 + 10.34 =22.34m

 \(V_1\) = \(\frac{4}{3}\)π× \(r^3_1\)

= \(\frac{4}{3}× π×{4.5^3cm^3}\)

\(P_2\) = 10.34m

\(V_2\)  = \(\frac{4}{3} {π}{r^3_2}\)

from boyles law:

\(P_1V_1\)  = \(P_2V_2\) 

⇒ 22.34× \(\frac{4}{3}× π×{4.5^3}\) = 10.34 × \(\frac{4}{3}×π×{r^3_2}\)

⇒ 22.34 × \(4.5^3\) = 10.34 × \(r^3_2\)

 \(r^3_2 = \sqrt[3]{196.88}\)

⇒ \(r_2\) = 5.82cm

95.

A 200 kg load is raised using a 110 m long lever as shown in the diagram above. The load is 10m from the pivot P. If the efficiency of the the lever is 80%, find the effort E required to lift the load.
[Take g = 10ms-2]

A.

250

B.

300

C.

450

D.

200

Correct answer is A

ε= 80%, L=200× 10 = 2000N, \(d_L\)=10m
 

\(d_E\)= 110-10 = 100m, E=?

ε = \(\frac{work done on the load}{work done by the effort}\)  × 100%

⇒  work done on load = 2000 ×10 =20,000 j


⇒ work done by effort = E × 100  = 100E

⇒ 80 =   \(\frac{20,000}{100E}\) × 100%

⇒ 80 =   \(\frac{20,000}{E}\) 

⇒ E = \(\frac{20,000}{80}\)

              ⇒  E = 250N

96.

A man swung an object of mass 2 kg in a circular path with a rope 1.2 m long. If the object was swung at 120 rev/min, find the tension in the rope.

A.

400

B.

288

C.

240

D.

379

Correct answer is D

m=2kg, r=1.2m, f=120rev/min ; T=?

f=   \(\frac{120rev}{1min}\) × \(\frac{1min}{60s}\) = 2rev\s

w=2πf= 2×π×2= 4πrad\s

T= \(\frac{mv^2}{r}\),  but v = wr 

⇒ T = \(\frac{(m)(wr)^2}{r}\)

⇒ T = \(mw^2r\)

= T = 2× (4π)^2 × 1.2

   T = 379N ( to 3 s.f)

97.

A wire of radius 0.2 mm is extended by 0.5% of its length when supported by a load of 1.5 kg. Determine the Young's modulus for the material of the wire.

[Take g = 10 ms\(^{-2}\)]

A.

\(2.4×10^{10}(Nm^{-2})\)

B.

\(1.5×10^{10}(Nm^{-2})\)

C.

\(2.4×10^9(Nm^{-2})\)

D.

\(1.3×10^{10}(Nm^{-2})\)

Correct answer is A

r=0.2mm = \(2 × {10^{-4}}\) e= 0.05% of L,=0.005L, m=1.5kgg=\(10 ms^{-2}\) ,  y=?,    

(1000 mm = 1m)

Y = \(\frac{FL}{Ae}\)

w = mg = 1.5 × 10 = 15

A = \(\pi r^2\) = \(\frac{22}{7}×(2×10^{-4})^2\) = \(1.26×10^{-7}(m^2)\)

⇒ Y = \(\frac{15L}{1.26×10^{-7}×0.005L}\)

⇒ Y = \(\frac{15}{1.26×10^{-7}×0.005}\)

⇒ Y = \(\frac{15}{6.29×10^{-10}}\)

Y = \(2.4×10^{10}(Nm^{-2})\)

98.

How much net work is required to accelerate a 1200 kg car from 10\(ms^{-1}\) to 15\(ms^{-1}\)

A.

1.95×\(10^5 j\)

B.

1.35×\(10^4 j\)

C.

7.5×\(10^4 j\)

D.

6.0×\(10^4 j\)

Correct answer is C

m=1200kg,  \(V_1\)= \(10ms^{-1}\)   \(V_2\) = \(15ms^{-1}\),  w= ?

work=►K.E = \( K.E_2\) =  \(K.E_2\) - \(K.E_1\)

⇒work= \(\frac{1}{2}{mv^2_2}-\frac{1}{2}{mv^2_1}\)

⇒work= \(\frac{1}{2}m({v^2_2}-{v^2_1}\))

⇒work= \(\frac{1}{2}× 1200× (15^2-10^2)\)

⇒work = 600 ×  (225 -100)

⇒work= 600 × 125

⇒work= 7.5×\(10^4 j\)

99.

Which process is responsible for production of energy in stars?

A.

Nuclear reaction

B.

Nuclear fission

C.

Nuclear fusion

D.

Radioactive decay

Correct answer is C

Nuclear fusion is the process in which lighter nuclei are combined to form heavier ones. Matter lost in this process is converted into energy. The energy produced inside the stars is due to the process of nuclear fusion.

100.

The surface temperature of a swimming pool on a warm day is 25ºC and the temperature at the bottom is 15ºC. If the swimming pool has a surface area of 620 \(m^2\) and a depth of 1.5m. Find the rate at which energy is transferred by conduction from the surface to the bottom of the swimming pool.

[Thermal conductivity of water (k) = 0.6071 Wm-1K-1]

A.

2.5kw

B.

250kw

C.

300kw

D.

3.0kw

Correct answer is A

L=1.5m,  A=\(620m^2\),  ø=25-15=10°c

K=0.6071 , \(Wm^{-1}k^{-1}\) ,  \(\frac{q}{t}\) =?

\(\frac{q}{t}\) =KA,     \(\frac{►t}{L}\) 

where k is the thermal conductivity constant and \(\frac{q}{t}\)  is the rate of heat transfer

=\(\frac{q}{t}\)=0.6071×620×\(\frac{10}{1.5}\)

\(\frac{q}{t}\) = 2509.35w ≈ 2.5kw