Home / Aptitude Tests / Mathematics / Calculate the mid po...
Calculate the mid point of the line segment y - 4x + 3 = 0, ...

Calculate the mid point of the line segment y - 4x + 3 = 0, which lies between the x-axis and y-axis.

A.

\(\begin{pmatrix} 3 & -3 \\ 8 & 2 \end{pmatrix}\)

B.

\(\begin{pmatrix} 3 & 3 \\ 8 & 2 \end{pmatrix}\)

C.

\(\begin{pmatrix} -2 & 2 \\ 2 & 2 \end{pmatrix}\)

D.

\(\begin{pmatrix} -2 & 3 \\ 3 & 2 \end{pmatrix}\)

Correct answer is A

y - 4x + 3 = 0

When y = 0, 0 - 4x + 3 = 0

Then -4x = -3

x = 3/4

So the line cuts the x-axis at point (3/4, 0).

When x = 0, y - 4(0) + 3 = 0

Then y + 3 = 0

y = -3

So the line cuts the y-axis at the point (0, -3)

Hence the midpoint of the line y - 4x + 3 = 0, which lies between the x-axis and the y-axis is;

\([\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2)]\)

\([\frac{1}{2}(\frac{3}{4} + 0), \frac{1}{2}(0 + -3)]\)

\([\frac{1}{2}(\frac{3}{4}), \frac{1}{2}(-3)]\)

\([\frac{3}{8}, \frac{-3}{2}]\)