S2 - 2
S + 2
S - 2
S2 + 2
Correct answer is B
S = \(\sqrt{t^2 - 4t + 4}\)
S2 = t2 - 4t + 4
t2 - 4t + 4 - S2 = 0
Using \(t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
Substituting, we have;
Using \(t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(4 - S^2)}}{2(1)}\)
\(t = \frac{4 \pm \sqrt{16 - 4(4 - S^2)}}{2}\)
\(t = \frac{4 \pm \sqrt{16 - 16 + 4S^2}}{2}\)
\(t = \frac{4 \pm \sqrt{4S^2}}{2}\)
\(t = \frac{2(2 \pm S)}{2}\)
Hence t = 2 + S or t = 2 - S
x 6.20 6.85 7.50 y 3.90 5.20 6.50 The points on a linear graph are as s...
Evaluate \(\frac{(2.813 \times 10^{-3} \times 1.063)}{(5.637 \times 10^{-2})}\) reduc...
How many students are there in the group? ...
The probability of picking a letter T from the word OBSTRUCTION is? ...
Marks 1 2 3 4 5 6 7 8 9 10 No of students 1 3 2 0 1 6 1 0 1 0 ...
Simplify \((\sqrt{0.7} + \sqrt{70})^{2}\) ...
Evaluate \(\frac{0.00000231}{0.007}\) and leave the answer in standard form...