sec2 θ
tan θ cosec θ
cosec θsec θ
cosec2θ
Correct answer is A
sinθcosθ
cosθd(sinθ)dθ−sinθd(cosθ)dθcos2θ
cosθ.cosθ−sinθ(−sinθ)cos2θ
cos2θ+sin2θcos2θ
Recall that sin2 θ + cos2 θ = 1
1cos2θ = sec2 θ
Find the equation whose roots are −23 and 3...
If xa+1 + yb = 1. Make y the subject of the relation....
In the diagram, TS is a tangent to the circle at S. |PR| and < PQR = 177o. Calculate < PST....
Let f(x) = 2x + 4 and g(x) = 6x + 7 here g(x) > 0. Solve the inequality f(x)g(x) < 1...